网络流相关定理与模型

模型

最小割

定义

定义一个有向图 G = ( V , E ) G=(V,E) G=(V,E),的割为一种点的划分方式:将所有的点划分为 S S S T = V   \   S T=V\ \backslash\ S T=V \ S 两个集合,其中源点 s ∈ S s\in S sS,汇点 t ∈ T t\in T tT,割的容量为 c ( S , T ) = ∑ u ∈ S , v ∈ T c ( u , v ) c(S, T)=\sum\limits_{u\in S, v\in T}c(u,v) c(S,T)=uS,vTc(u,v),最小割即 c ( S , T ) min ⁡ c(S,T)_{\min} c(S,T)min

算法

我们只要跑一遍最大流,即为最小割。

证明

见「最大流最小割定理」证明。

最大权闭合子图

定义

定义一个有向图 G = ( V , E ) G=(V,E) G=(V,E) 的闭合子图 G ′ = ( V ′ , E ′ ) G'=(V', E') G=(V,E),满足对于 ∀ ( u , v ) ∈ E ∀(u,v)\in E (u,v)E,若 u ∈ V ′ u\in V' uV,则 ( u , v ) ∈ E ′ , v ∈ V ′ (u,v)\in E',v\in V' (u,v)E,vV

最大权闭合子图即为对每个节点赋权值 v a l val val,所得到的最大 ∑ p ∈ V ′ v a l p \sum\limits_{p\in V'}val_p pVvalp

算法

我们构造超级源点 s s s 和汇点 t t t

  • 对于 v a l u > 0 val_u > 0 valu>0,在新图上连边 ( s , u , v a l u ) (s, u, val_u) (s,u,valu)
  • 对于 v a l u ≤ 0 val_u\le 0 valu0,在新图上连边 ( v , t , − v a l v ) (v, t, -val_v) (v,t,valv)
  • 对于 ( u , v ) ∈ E (u,v)\in E (u,v)E,在新图上连边 ( u , v , + ∞ ) (u,v,+\infty) (u,v,+)

所有正权值之和减最小割即是答案。

证明

感性证明一下,首先对于原图中的边 ( u , v , + ∞ ) (u,v,+\infty) (u,v,+) 不可能在最小割里面,然后我们令若 ( s , u , v a l u ) (s,u,val_u) (s,u,valu) 选到了最小割集,就代表不选 u u u;若 ( u , t , − v a l u ) (u, t,-val_u) (u,t,valu) 选到了最小割集,就代表选 u u u。选出来的图必定是闭合子图,因为对于一个没选的正权点 u u u,因为原图除去割集不联通,所以 u u u 的所有负权后继与 t t t 之间的边必然在割集内,也就是已经选到了最终权值中。

那怎么保证最大呢?最小割保证损失节点权值(定义为负)和与负权权值之和最小,自然闭合子图总权值最大。

最大密度子图

定义

定义一个图 G = ( V , E ) G=(V,E) G=(V,E) 的密度为 ∣ E ∣ ∣ V ∣ \dfrac {|E|} {|V|} VE,则对于一个图 G = ( V , E ) G=(V,E) G=(V,E),选出其一个子图 G ′ = ( V ′ , E ′ ) G'=(V', E') G=(V,E),使得密度最大,该图就是最大密度子图。

算法 1

我们考虑 0/1 分数规划,二分答案为 g g g,判断 ∣ E ′ ∣ ∣ V ′ ∣ ≥ g \dfrac {|E'|} {|V'|}\ge g VEg,即 ∣ E ′ ∣ − g ∣ V ′ ∣ ≥ 0 |E'|-g|V'|\ge 0 EgV0,于是我们只需要求 max ⁡ { ∣ E ′ ∣ − g ∣ V ′ ∣ } \max\{|E'|-g|V'|\} max{EgV} 即可。这里注意二分范围为 [ 1 n , m ] \left[\dfrac 1 n, m\right] [n1,m] ϵ = 1 n 2 \epsilon=\dfrac{1}{n^2} ϵ=n21,即最小子图密度之差为 1 n 2 \dfrac{1}{n^2} n21

然后又有选了边 ( u , v ) (u,v) (u,v) 又一定要选点 u , v u,v u,v 的限制,考虑最大权闭合子图的做法,建立超级源点 s s s 和汇点 t t t

  • 对于表示边的点 u u u,在新图上连边 ( s , u , 1 ) (s, u, 1) (s,u,1)
  • 对于表示点的点 u u u,在新图上连边 ( u , t , g ) (u, t, g) (u,t,g)
  • 对于 ( u , v ) ∈ (u,v)\in (u,v),在新图上连边 ( u , v , + ∞ ) (u,v,+\infty) (u,v,+)

跑一遍最小割,令 m ≥ n m\ge n mn,二分次数为 log ⁡ T ≈ log ⁡ n m \log T\approx \log nm logTlognm,时间复杂度即为 O ( m 3 log ⁡ T ) \mathcal O(m^3\log T) O(m3logT)

证明 1

算法正确性显然,唯一需要注意点的是,最终答案不可能会出现只选表示点的点而不选与之相连的边,因为最优答案一定是原图的导出子图。

算法 2

证明 1 中说明了最终答案一定是一个导出子图,于是我们尝试在原图中找出最小割,割出一个导出子图。

首先按照算法一做一遍 0/1 分数规划,再将 max ⁡ { ∣ E ′ ∣ − g ∣ V ′ ∣ } \max\{|E'|-g|V'|\} max{EgV} 转化为 min ⁡ { g ∣ V ′ ∣ − ∣ E ′ ∣ } \min\{g|V'|-|E'|\} min{gVE},便于最小割,然后我们化一下式子:

g ∣ V ′ ∣ − ∣ E ′ ∣ = ∑ u ∈ V ′ g − ( ∑ u ∈ V ′ d e g u − c ( V ′ , V ′ ‾ ) 2 ) = 1 2 ( ∑ u ∈ V ′ ( 2 g − d e g u ) + c ( S , T ) ) \begin{aligned}g|V'|-|E'|=&\sum\limits_{u\in V'}g-\left(\dfrac{\sum\limits_{u\in V'}deg_u-c(V',\overline{V'})}{2}\right)\\=&\dfrac 1 2\left(\sum\limits_{u\in V'}(2g-deg_u)+c(S,T)\right)\end{aligned} gVE==uVg 2uVdeguc(V,V) 21(uV(2gdegu)+c(S,T))

然后呢他有个神仙建图,从后往前推我不会,就先讲建图:

  • 对于原图中的点 u ∈ V u\in V uV,在新图上连边 ( s , u , Δ ) , ( u , t , 2 g − d e g u + Δ ) (s,u,\Delta),(u,t,2g-deg_u+\Delta) (s,u,Δ),(u,t,2gdegu+Δ)
  • 对于 ( u , v ) ∈ E (u,v)\in E (u,v)E,在新图上建边 ( u , v , 1 ) (u,v,1) (u,v,1)

最后求最小割,关系式为 ∣ E ′ ∣ − g ∣ V ′ ∣ = n Δ − c ( S , T ) 2 |E'|-g|V'|=\dfrac{n\Delta-c(S,T)}{2} EgV=2nΔc(S,T),我们发现 c ( S , T ) c(S,T) c(S,T) ∣ E ′ ∣ − g ∣ V ′ ∣ |E'|-g|V'| EgV 是线性关系的,这就说明了最小割正确性,这个关系式在下面给出证明。其中 Δ \Delta Δ 为偏移量,为了使边权非负,一般取 Δ = n \Delta = n Δ=n

m ≥ n m\ge n mn,二分次数为 log ⁡ T ≈ log ⁡ n m \log T\approx \log nm logTlognm,时间复杂度即为 O ( n 2 m log ⁡ T ) \mathcal O(n^2m\log T) O(n2mlogT)

证明 2

我们尝试推出 c ( S , T ) c(S,T) c(S,T) 的本质,令 V ′ = S   \   { s } , V ′ ‾ = T   \   { t } V'=S\ \backslash\ \{s\}, \overline{V'}=T\ \backslash\ \{t\} V=S \ {s},V=T \ {t}

c ( S , T ) = ∑ v ∈ V ′ ‾ Δ + ∑ u ∈ V ′ ( 2 g − d e g u + Δ ) + ∑ u ∈ V ′ ∑ v ∈ V ′ ‾ c ( u , v ) = ∑ v ∈ V ′ ‾ Δ + ∑ u ∈ V ′ ( 2 g + Δ − ( d e g u − ∑ v ∈ V ′ ‾ c ( u , v ) ) ) = ∑ v ∈ V ′ ‾ Δ + ∑ u ∈ V ′ ( 2 g + Δ − ∑ u ∈ V ′ c ( u , v ) ) = n Δ + 2 g ∣ V ′ ∣ − 2 ∣ E ′ ∣ \begin{aligned}c(S,T)&=\sum\limits_{v\in \overline{V'}}\Delta+\sum\limits_{u\in V'}(2g-deg_u+\Delta)+\sum\limits_{u\in V'}\sum\limits_{v\in \overline{V'}}c(u,v)\\ &=\sum\limits_{v\in \overline{V'}}\Delta+\sum\limits_{u\in V'}\left(2g+\Delta-\left(deg_u-\sum\limits_{v\in \overline{V'}}c(u,v)\right)\right)\\ &=\sum\limits_{v\in \overline{V'}}\Delta+\sum\limits_{u\in V'}\left(2g+\Delta-\sum\limits_{u\in V'}c(u,v)\right)\\ &=n\Delta+2g|V'|-2|E'|\end{aligned} c(S,T)=vVΔ+uV(2gdegu+Δ)+uVvVc(u,v)=vVΔ+uV 2g+Δ deguvVc(u,v) =vVΔ+uV(2g+ΔuVc(u,v))=nΔ+2gV2∣E

然后移个项就得到了 ∣ E ′ ∣ − g ∣ V ′ ∣ = n Δ − c ( S , T ) 2 |E'|-g|V'|=\dfrac{n\Delta-c(S,T)}{2} EgV=2nΔc(S,T)

DAG 最小不相交 / 可相交路径覆盖

定义

在一个有向无环图中选出若干条不相交的路径,使得每个点都属于一条路径,这种方案称为不相交路径覆盖,最小路径覆盖即为路径数最小的方案。

同理,在一个有向无环图中选出若干条路径,使得每个点都至少属于一条路径,这种方案称为可相交路径覆盖,最小可相交覆盖即为路径条数最小的方案。

算法

  • 不相交路径

对于每个点 u ∈ V u\in V uV,拆成入点 u ′ u' u 和出点 u u u,对于原图中 ( u , v ) ∈ E (u,v)\in E (u,v)E,在新图中建边 ( u , v ′ , 1 ) (u,v',1) (u,v,1),最终答案为总点数减去二分图 G = ( X , Y , E ) G=(X,Y,E) G=(X,Y,E) 的最大匹配,其中出点集合为 X X X,入点集合为 Y Y Y,时间复杂度 O ( m n ) \mathcal O(m\sqrt n) O(mn )

  • 可相交路径

我们发现链可以相交,尝试着转化为链不相交的做法。

我们对原图做一次传递闭包,这样路径就可以跳着走,也就是如果两条链相交,可以选择一条链跳过相交点,这样就转化为了不相交做法。然后其实最终的方案可以和可相交路径方案对应的。时间复杂度 O ( n 2 ( n ω + n ) ) \mathcal O(n^2(\dfrac n \omega+ \sqrt n)) O(n2(ωn+n ))

证明

  • 不相交路径

对于没有边的原图,答案显然是 ∣ V ∣ |V| V。而在新图中的每一条边 ( u , v ′ ) (u,v') (u,v),都代表原图中的路径合并,且因为求的是最大匹配,所以路径一定合法。于是答案就为点数减合并最大次数。

  • 可相交路径

显然。

定理

最大流最小割定理

最大流等于最小割。

证明方式

显然对于任意割一定大于等于任意流,特别的,有 ∣ f ∣ max ⁡ ≤ c ( S , T ) min ⁡ |f|_{\max}\le c(S, T)_{\min} fmaxc(S,T)min

然后对于任意割 c ( S , T ) = ∣ f ∣ c(S, T)=|f| c(S,T)=f 的情况, f f f 此时一定是最大流,因为割的容量等于割的流量,相当于原图中已经没有增广路径,即最大流。又因 ∣ f ∣ max ⁡ ≤ c ( S , T ) min ⁡ ≤ c ( S , T ) = ∣ f ∣ max ⁡ |f|_{\max}\le c(S, T)_{\min}\le c(S, T)=|f|_{\max} fmaxc(S,T)minc(S,T)=fmax,即可得 ∣ f ∣ max ⁡ = c ( S , T ) min ⁡ |f|_{\max}= c(S, T)_{\min} fmax=c(S,T)min

Kőnig 定理

二分图最小点覆盖为最大匹配。

证明方式 1

我们考虑一个不存在增广路的最大匹配 M M M,并如下对点做标记:每次从一个未被匹配的左部点走交错路径,即从左往右走未匹配边,从右往左走匹配边,走过的所有点都打上标记。

其中对于所有未标记的左部点和标记的右部点为最小点覆盖集 C C C,我们将分两步证明。

点覆盖集合法

  • 对于一条匹配边,一定是右端点先被标记,然后遍历左端点被标记,所以一条匹配边刚好有一个点属于点覆盖集。

  • 对于一条未匹配边,必然至少有一个点属于点覆盖集,否则其左部点已被标记而右部点未被标记,显然这是不符合的。

点覆盖集最小

首先肯定有 ∣ C ∣ ≥ ∣ M ∣ |C|\ge |M| CM,因为每个匹配边至少需要一个单独的覆盖点。

然后证明 ∣ C ∣ = ∣ M ∣ |C|=|M| C=M

  • 对于右部被标记的点,必然被匹配,否则可以和左部过来的点匹配。

  • 对于左部未被标记的点,必然被匹配,特殊情况为孤立点,此时交错路径退化为单点。

以上证明了如此构造点集一一对应匹配边,且为最小点覆盖集。

证明方式 2

考虑转化成最小割形式,令左部点集合为 X X X,右部点集合为 Y Y Y,则有 ( s , u , 1 ) , u ∈ L (s,u,1), u\in L (s,u,1),uL ( u , t , 1 ) , u ∈ R (u,t,1),u\in R (u,t,1),uR ( u , v , + ∞ ) , u ∈ L , v ∈ R (u,v,+\infty),u\in L, v\in R (u,v,+),uL,vR。若得到最小割 c ( S , T ) min ⁡ c(S,T)_{\min} c(S,T)min,这个最小割的容量即为 ∣ X ∩ T ∣ + ∣ Y ∩ S ∣ |X\cap T|+|Y\cap S| XT+YS,因为不存在 ( u , v ) , u ∈ S , v ∈ T (u,v),u\in S, v\in T (u,v),uS,vT 被割。

于是我们构造点覆盖集合 P = ∣ X ∩ T ∣ ∪ ∣ Y ∩ S ∣ P=|X\cap T|\cup|Y\cap S| P=XTYS,则所有 ( u , v ) , u ∈ S , v ∈ T (u,v),u\in S, v\in T (u,v),uS,vT u , v u,v u,v 至少有一个在 P P P 中,否则不构成割集。所以最小割为最小点覆盖,又因最大匹配为最大流,最大流等于最小割,所以最小点覆盖为最大匹配。

霍尔定理

对于二分图 G = ( X , Y , E ) G=(X,Y,E) G=(X,Y,E) ∀ S ⊆ X , ∣ S ∣ ≤ N ( S ) ⇔ \forall S\subseteq X,|S|\le N(S) \Leftrightarrow SX,SN(S) 二分图具有完美匹配,当然, ∣ X ∣ = ∣ Y ∣ |X|=|Y| X=Y

首先如果有完美匹配,必然有 ∀ S ⊆ X , ∣ S ∣ ≤ N ( S ) \forall S\subseteq X,|S|\le N(S) SX,SN(S),剩下的有两种方式证明:

证明方式 1

首先原图没有完美匹配但是满足以上条件,我们在左部图 X X X 找到一个未被匹配的点,因为满足条件,所以右部与之相邻的点至少有一个且全部都一定被匹配,否则必定有更大的匹配。于是我们随便走到一个已经匹配的右部点,然后再走到相对应匹配的左部点,然后再随便找一个未走过的左部点,因为满足假设,我们最终一定停留在右部点。于是我们找到了一条增广路,不符合最大匹配。

证明方式 2

和 Kőnig 定理证明一样,如下连边:令左部点集合为 X X X,右部点集合为 Y Y Y,则有 ( s , u , 1 ) , u ∈ L (s,u,1), u\in L (s,u,1),uL ( u , t , 1 ) , u ∈ R (u,t,1),u\in R (u,t,1),uR ( u , v , + ∞ ) , u ∈ L , v ∈ R (u,v,+\infty),u\in L, v\in R (u,v,+),uL,vR,并得到最小割 c ( S , T ) min ⁡ c(S,T)_{\min} c(S,T)min

我们假设满足 ∀ S ⊆ X , ∣ S ∣ ≤ N ( S ) \forall S\subseteq X,|S|\le N(S) SX,SN(S) 而二分图不具有完美匹配,则最大匹配 ∣ M ∣ < ∣ X ∣ |M|<|X| M<X,同时最小割 c ( S , T ) min ⁡ < ∣ X ∣ c(S,T)_{\min} < |X| c(S,T)min<X。我们令 L 1 = S ∩ X L_1=S\cap X L1=SX L 2 = X   \   L 1 L_2=X\ \backslash\ L_1 L2=X \ L1 R 1 = N ( L 1 ) ∩ Y R_1=N(L_1)\cap Y R1=N(L1)Y,则由 L 2 ∩ R 1 L_2\cap R_1 L2R1 一定在割集内,又因假设满足,所以有 ∣ L 1 ∣ ≤ ∣ R 1 ∣ |L_1|\le |R_1| L1R1。得到关系式 c ( S , T ) min ⁡ ≥ ∣ L 2 ∩ R 1 ∣ ≥ ∣ L 2 ∩ L 1 ∣ = ∣ X ∣ c(S,T)_{\min}\ge |L_2\cap R_1|\ge|L_2\cap L_1|=|X| c(S,T)minL2R1L2L1=X,与假设矛盾,得证。

二分图 Vizing 定理

对于二分图 G = ( X , Y , E ) G=(X,Y,E) G=(X,Y,E),对每一条边染色,使得每个点所连的边颜色各不相同,若满足条件的最小颜色数为 χ ′ ( G ) \chi'(G) χ(G),点的最大度数为 Δ ( G ) = max ⁡ u ∈ V d e g u \Delta(G) = \max\limits_{u\in V}deg_u Δ(G)=uVmaxdegu,则有 χ ′ ( G ) = Δ ( G ) \chi'(G)=\Delta (G) χ(G)=Δ(G)

证明

考虑构造性证明。令颜色集合为 { 1 , 2 , … , Δ ( G ) } \{1,2,\dots, \Delta(G)\} {1,2,,Δ(G)},对于每个点 u u u 所连的边中,未被染的最小颜色编号为 C u C_u Cu

我们依次加入每一条边 ( u , v ) (u,v) (u,v)

  • 对于 C u = C v C_u=C_v Cu=Cv,将边 ( u , v ) (u,v) (u,v) 染成 C u C_u Cu 颜色。
  • 对于 C u ≠ C v C_u\not=C_v Cu=Cv,令 C u < C v C_u< C_v Cu<Cv,则我们从 v v v 开始找到一条增广路,颜色为交替 C u , C v , C u , … C_u,C_v,C_u,\dots Cu,Cv,Cu,,将整条路颜色翻转,并将 ( u , v ) (u,v) (u,v) 染成 C u C_u Cu 颜色。

得证。

Dilworth 定理

在有向无环图中,最长反链等于最小链覆盖;其对偶定理为最长链等于最小反链覆盖

注意:链不一定要连续,即链不等于路径。

证明

对于原图,我们对其进行传递闭包,和求最小可相交路径覆盖一样,对于每个点 u ∈ V u\in V uV,拆成入点 u ′ u' u 和出点 u u u,对于原图中 ( u , v ) ∈ E (u,v)\in E (u,v)E,在新图中建边 ( u , v ′ , 1 ) (u,v',1) (u,v,1),最小链覆盖即为总点数减最大匹配。

还有一个结论:原图最长反链为最大独立集,以下证明:

对于原图中的任意一个点 u u u,在新图中 u u u u ′ u' u 中必然至少有一个点在最大独立集中,否则必然存在 ( a , u ′ ) (a,u') (a,u) ( u , b ) (u, b) (u,b) 两条边,使得 a , b a,b a,b 都在最大独立集内,但如此原图便存在 ( a , b ) (a,b) (a,b),故不成立,所以最大独立集满足对于每个点在新图中的入点和出点尽可能多。显然对于这些点可以形成一组反链,因为最大独立集保证没有前驱和后继与原点相连,且这组反链可以和原图对应。

然后因为由「其他定理 1」可得二分图最大匹配 = 最大独立集补集,所以最小链覆盖等于最长反链。

其他定理

  • 二分图最小点覆盖 = 最大独立集补集

我们发现点覆盖 C C C 和独立集 I I I 的定义恰好相反,即 ∀ ( u , v ) ∈ E , u ∈ C ∨ v ∈ C \forall (u,v)\in E,u\in C\vee v\in C (u,v)E,uCvC ∄ ( u , v ) ∈ E , u ∈ I ∧ v ∈ I \not\exists (u,v)\in E,u\in I\wedge v\in I (u,v)E,uIvI。所以最大独立集的补集,就保证了每条边都被覆盖,得证。

根据 Kőnig 定理,可得二分图最大匹配 = 最小点覆盖 = 最大独立集补集

  • 二分图最小边覆盖 = 点数减最大匹配

很显然,对于最小边覆盖,我们希望一条边覆盖两个点的边数越多越好,即匹配数最大,于是最后总点数减去覆盖两个点的边即为最小边覆盖。

  • 最大团 = 补图最大独立集

最大独立集两两之间没有边,补图则两两之间有边,则为团。

原文链接:https://blog.csdn.net/zack_zhoukuan/article/details/132543845?spm=1001.2014.3001.5501

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值