✨前言:老板的"灵魂拷问"
事情是这样的,某天老板突然丢过来一个Excel表格,拍着桌子说:
“小李,这个Excel里几千行数据,你给我整理一下,明天早上要用!”
我当时差点没把手里的奶茶喷出来,心想:几千行?手动改?我这怕不是得改秃了!
于是,我默默打开了我的Python神器——pandas
和openpyxl
,不到十分钟,任务搞定,潇洒下班。老板看着整齐的数据,眼里透着光,转头又给我派了个新活儿……
既然自动化办公这么香,那今天就给大家分享20个超实用的Excel操作脚本,让你轻松搞定表格数据处理,成为职场效率王!💡
在学习技能之前确保电脑里已经安装了pandas
和openpyxl
这2个必备神器!
pip install pandas openpyxl
🔢 1. 读取Excel文件
import pandas as pd
# 读取Excel
df = pd.read_excel("data.xlsx")
print(df.head()) # 查看前5行数据
💡 用途:打开Excel文件,读取数据,如果Excel中多个Sheet里都有数据,默认获取第一个Sheet里的数据。
🔢 2. 保存Excel文件
df.to_excel("output.xlsx", index=False)
💡 用途:保存DataFrame格式数据为Excel文件,index=False
表示不保存索引。
🔢 3. 读取多个Sheet
df_dict = pd.read_excel("data.xlsx", sheet_name=None) # 读取所有Sheet
print(df_dict.keys()) # 打印所有Sheet名称 比如 dict_keys(['Sheet1', 'Sheet2'])
# 遍历df_dict打印出所有的数据
for key in df_dict:
print(df_dict[key]) # 根据key值获取df_dict中存放的dataframe格式数据
💡 用途:一次性读取多个Sheet,返回字典格式,这个字典value对应了一个Dataframe格式的数据。
🔢 4. 选取特定列
selected_columns = df[["姓名", "工资"]]
print(selected_columns.head())