想学会Python自动化办公?这20个Excel表格操作脚本一定要掌握!

✨前言:老板的"灵魂拷问"

事情是这样的,某天老板突然丢过来一个Excel表格,拍着桌子说:

“小李,这个Excel里几千行数据,你给我整理一下,明天早上要用!”

我当时差点没把手里的奶茶喷出来,心想:几千行?手动改?我这怕不是得改秃了!

于是,我默默打开了我的Python神器——pandasopenpyxl,不到十分钟,任务搞定,潇洒下班。老板看着整齐的数据,眼里透着光,转头又给我派了个新活儿……

既然自动化办公这么香,那今天就给大家分享20个超实用的Excel操作脚本,让你轻松搞定表格数据处理,成为职场效率王!💡

在学习技能之前确保电脑里已经安装了pandasopenpyxl这2个必备神器!

pip install pandas openpyxl

🔢 1. 读取Excel文件

import pandas as pd

# 读取Excel
df = pd.read_excel("data.xlsx")
print(df.head())  # 查看前5行数据

💡 用途:打开Excel文件,读取数据,如果Excel中多个Sheet里都有数据,默认获取第一个Sheet里的数据。

🔢 2. 保存Excel文件

df.to_excel("output.xlsx", index=False)

💡 用途:保存DataFrame格式数据为Excel文件,index=False表示不保存索引。

🔢 3. 读取多个Sheet

df_dict = pd.read_excel("data.xlsx", sheet_name=None)  # 读取所有Sheet
print(df_dict.keys())  # 打印所有Sheet名称 比如 dict_keys(['Sheet1', 'Sheet2'])

# 遍历df_dict打印出所有的数据
for key in df_dict:
    print(df_dict[key]) # 根据key值获取df_dict中存放的dataframe格式数据

💡 用途:一次性读取多个Sheet,返回字典格式,这个字典value对应了一个Dataframe格式的数据。

🔢 4. 选取特定列

selected_columns = df[["姓名", "工资"]]
print(selected_columns.head())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花小姐的春天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值