我总结了20种最实用的Python图表,做数据可视化不用再抓狂了

我总结了20种最实用的Python图表,做数据可视化不用再抓狂了

在这里插入图片描述

花姐上线了!🌸
今天咱不聊鸡汤、不讲情怀,直接开整!花姐带你沉浸式体验 Python 可视化神器——Matplotlib的20种最常见图表玩法。

🔔 不管你是数据分析,机器学习,还是做周报、写PPT,只要掌握了这些图形,绝对是质的飞跃!

接下来,准备好你的 IDE,我们一个个上手敲起来!🎉


注:要想Matplotlib支持中文!代码跑之前记得加上👇这一行解决中文乱码问题:

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

如何你还没有安装matplotlib请打开你的终端(Terminal)或者命令行(cmd),直接敲:

pip install matplotlib

回车,喝口水,等一会儿,它自己就装好了。


1. 折线图(Line Chart)

常用于趋势变化,比如气温、股价、KPI变化啥的。

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

x = [1, 2, 3, 4, 5]
y = [3, 5, 7, 6, 9]

plt.plot(x, y, marker='o')
plt.title('每日访问量变化')
plt.xlabel('日期')
plt.ylabel('访问量')
plt.grid(True)
plt.show()

在这里插入图片描述


2. 条形图(Bar Chart)

横着比数据,适合分类比较。

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

categories = ['小红', '小明', '小刚', '小美']
scores = [90, 80, 75, 88]

plt.bar(categories, scores, color='skyblue')
plt.title('四人考试成绩对比')
plt.show()

在这里插入图片描述


3. 直方图(Histogram)

适合看数据分布,比如工资分布、身高、体重这些。

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

data = np.random.normal(170, 10, 200)

plt.hist(data, bins=20, color='orange', edgecolor='black')
plt.title('身高分布图')
plt.xlabel('身高')
plt.ylabel('人数')
plt.show()

在这里插入图片描述


4. 散点图(Scatter Plot)

两个变量之间的关系,看是否相关。

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

x = np.random.rand(100)
y = x + np.random.normal(0, 0.1, 100)

plt.scatter(x, y)
plt.title('学习时间 vs 成绩')
plt.xlabel('学习时间')
plt.ylabel('成绩')
plt.show()

在这里插入图片描述


5. 饼图(Pie Chart)

占比图!让老板看谁吃的预算多 😂

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

labels = ['广告', '运营', '人力', '技术']
sizes = [30, 20, 10, 40]

plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
plt.title('部门预算占比')
plt.axis('equal')
plt.show()

在这里插入图片描述


6. 面积图(Area Chart)

比折线图多了一点“填充感”,也更直观。

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

x = range(1, 6)
y = [1, 3, 4, 8, 12]

plt.fill_between(x, y, color="lightgreen")
plt.plot(x, y, color="green")
plt.title('用户增长趋势')
plt.show()

在这里插入图片描述


7. 箱线图(Box Plot)

统计分析必备,帮你看离群值、上下四分位这些。

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

data = [np.random.normal(50, std, 100) for std in (5, 10, 20)]

plt.boxplot(data, patch_artist=True)
plt.title('三组数据分布对比')
plt.show()

在这里插入图片描述


8. 热力图(Heatmap)

用颜色来表现数值大小,强烈推荐结合seaborn

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

data = np.random.rand(6, 6)
sns.heatmap(data, annot=True)
plt.title('热力图示例')
plt.show()

在这里插入图片描述


9. 雷达图(Radar Chart)

多维指标一图展示,简历必备,别说我没告诉你 💡

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

labels = ['沟通', '编码', '学习', '抗压', '责任心']
stats = [8, 9, 7, 6, 8]

angles = np.linspace(0, 2*np.pi, len(labels), endpoint=False).tolist()
stats += stats[:1]
angles += angles[:1]

fig, ax = plt.subplots(subplot_kw={'polar': True})
ax.plot(angles, stats, 'o-', linewidth=2)
ax.fill(angles, stats, alpha=0.25)
ax.set_thetagrids(np.degrees(angles[:-1]), labels)
plt.title('我的技能雷达图')
plt.show()

在这里插入图片描述


10. 极坐标图(Polar Chart)

散点+极坐标,视觉冲击感超强。

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

r = np.linspace(0, 1, 100)
theta = 2 * np.pi * r

plt.polar(theta, r)
plt.title('极坐标示例')
plt.show()

在这里插入图片描述


11. 双轴图(Dual Axis)

两个Y轴,两个变量共用一个X轴,超实用。

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

# 数据
months = ['1月','2月','3月','4月','5月','6月','7月','8月','9月','10月','11月','12月']
sales = [120, 150, 200, 180, 220, 260, 240, 300, 320, 310, 400, 500]
new_users = [3500, 3800, 4200, 4000, 5000, 5200, 4800, 6000, 6300, 6200, 7500, 8000]

fig, ax1 = plt.subplots(figsize=(10,6))

# 左轴:销售额
color = 'tab:blue'
ax1.set_xlabel('月份')
ax1.set_ylabel('销售额(万元)', color=color)
ax1.plot(months, sales, color=color, marker='o', label='销售额')
ax1.tick_params(axis='y', labelcolor=color)

# 右轴:新注册用户
ax2 = ax1.twinx()
color = 'tab:red'
ax2.set_ylabel('新注册用户(人)', color=color)
ax2.plot(months, new_users, color=color, marker='s', linestyle='--', label='新注册用户')
ax2.tick_params(axis='y', labelcolor=color)

plt.title('某电商平台2024年月度销售额与新注册用户')
ax1.grid(True)

plt.show()

在这里插入图片描述


12. 折线图+散点图混搭(Line + Scatter)

增强折线图表达力的小技巧!

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

# 折线数据
months = ['1月','2月','3月','4月','5月','6月','7月','8月','9月','10月','11月','12月']
avg_price = [18500, 18700, 19000, 18800, 19200, 19400, 19500, 19800, 20000, 20200, 20500, 21000]

# 散点数据
special_months = ['3月', '6月', '8月', '11月']
special_price = [21000, 22000, 23000, 25000]

fig, ax = plt.subplots(figsize=(10,6))

# 画折线图
ax.plot(months, avg_price, color='blue', marker='o', label='平均房价(元/㎡)')

# 画散点图
ax.scatter(special_months, special_price, color='red', s=100, marker='*', label='特殊成交(元/㎡)')

plt.title('2024年某小区月均房价及特殊成交记录')
plt.xlabel('月份')
plt.ylabel('价格(元/㎡)')
plt.legend()
plt.grid(True)

plt.show()

在这里插入图片描述


13. 阶梯图(Step Plot)

适合描述“突变”的情况,比如电费、分段计价那种。

import matplotlib.pyplot as plt
from datetime import datetime
import matplotlib.dates as mdates

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

# 数据
dates = ['2023-10-01', '2023-10-02', '2023-10-03', 
         '2023-10-04', '2023-10-05', '2023-10-06', '2023-10-07']
temperatures = [22, 23, 20, 19, 18, 20, 21]

# 转换日期格式
dates = [datetime.strptime(d, '%Y-%m-%d') for d in dates]

# 创建图表
plt.figure(figsize=(10, 6))

# 绘制阶梯图(post样式的阶梯变化)
plt.step(
    dates,
    temperatures,
    where='post',    # 阶梯在数据点后变化
    color='#E64A45', # 中国红配色
    linewidth=2.5,
    marker='o',      # 添加数据点标记
    markersize=8,
    markerfacecolor='white',
    markeredgewidth=2,
    label='每日最高气温'
)

# 添加标题和标签
plt.title('北京市国庆期间气温变化(2024年10月1-7日)', fontsize=14, pad=20)
plt.xlabel('日期', fontsize=12)
plt.ylabel('温度 (°C)', fontsize=12)

# 配置坐标轴
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m/%d'))
plt.gca().xaxis.set_major_locator(mdates.DayLocator())
plt.xticks(rotation=30)
plt.ylim(15, 25)

# 添加辅助元素
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.legend(loc='upper left', frameon=False)

plt.show()

在这里插入图片描述


14. 饼图 + 中心洞(环形图)

视觉更舒服,直接用wedgeprops搞定。

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

# 数据
categories = [
    '煤炭', 
    '石油', 
    '天然气', 
    '可再生能源\n(水电/风电/光伏)'
]
percentages = [56.2, 18.5, 9.4, 15.9]
colors = [
    '#6D8698',  # 灰蓝(煤炭)
    '#BE7352',  # 棕褐(石油)
    '#8FA6A2',  # 青灰(天然气)
    '#8FB3B0'   # 浅绿(可再生能源)
]

# 创建带中心洞的环形图
fig, ax = plt.subplots(figsize=(8, 8))
wedges, texts, autotexts = ax.pie(
    percentages,
    wedgeprops={
        'width': 0.5,          # 环宽=半径的50%
        'edgecolor': 'white',  # 白色分割线
        'linewidth': 1.5       # 分割线粗细
    },
    colors=colors,
    startangle=90,           # 起始角度(12点方向)
    autopct='%1.1f%%',       # 百分比格式
    pctdistance=0.85         # 百分比标签位置(0.85倍半径)
)

# 设置百分比标签样式
for autotext in autotexts:
    autotext.set_color('white')
    autotext.set_fontsize(10)
    autotext.set_weight('bold')

# 添加中心标题
ax.text(
    0, 0, 
    'XX国能源结构\n2024',
    ha='center', 
    va='center',
    fontsize=16,
    fontweight='bold',
    color='#2F4F4F'
)

# 添加图例(带透明度效果)
legend = ax.legend(
    wedges,
    categories,
    title="能源类型",
    loc="center left",
    bbox_to_anchor=(1, 0, 0.5, 1),
    frameon=False,
    labelspacing=1.2
)
legend.get_title().set_fontweight('bold')

# 设置长宽比保证正圆形
ax.axis('equal')  

plt.tight_layout()
plt.show()

在这里插入图片描述


15. 误差线图(Error Bar)

实验、分析场景常用。

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文

# 数据 (单位:万辆)
quarters = ['Q1', 'Q2', 'Q3', 'Q4']
avg_sales = [158.6, 173.2, 204.6, 227.4]  # 季度平均销量
std_dev = [8.2, 9.5, 11.3, 13.1]          # 各季度销量标准差

# 创建带误差线的散点图
plt.figure(figsize=(10, 6))

# 主绘图语句
main_line = plt.errorbar(
    x=quarters,
    y=avg_sales,
    yerr=std_dev,           # 误差线数据
    fmt='o-',               # 点线组合
    markersize=10,
    markerfacecolor='#2E86C1',
    markeredgecolor='white',
    elinewidth=2,           # 误差线粗细
    ecolor='#E74C3C',       # 误差线颜色
    capsize=8,              # 误差线顶端横杠长度
    linewidth=2.5,
    label='平均销量 ± 标准差'
)

# 添加数据标签
for i, (v, s) in enumerate(zip(avg_sales, std_dev)):
    plt.text(i, v + 15, 
             f'{v}±{s}',
             ha='center', 
             fontsize=10,
             bbox=dict(facecolor='white', alpha=0.8))

# 可视化优化
plt.title('2024年中国新能源汽车季度销量误差分析', fontsize=14, pad=20)
plt.ylabel('销量 (万辆)', labelpad=12)
plt.ylim(120, 260)
plt.grid(axis='y', linestyle='--', alpha=0.6)

# 添加图例
leg = plt.legend(loc='upper left')
leg.get_frame().set_linewidth(0.0)  # 移除图例边框

plt.tight_layout()
plt.show()

在这里插入图片描述


16. 等高线图(Contour Plot)

展示函数值随二维变量变化的趋势。

import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题

# 生成地形数据(模拟青海湖周边区域 20x20公里)
x = np.linspace(-10, 10, 200)
y = np.linspace(-8, 12, 200)
X, Y = np.meshgrid(x, y)

# 高程函数(包含湖盆与山脉特征)
Z = 3200 + 50*Y - 40*X**2 + 30*np.sin(2*X) + 45*np.exp(-(X**2 + Y**2)/25)

# 创建画布
plt.figure(figsize=(12, 8))

# 绘制填充等高线
cs = plt.contourf(X, Y, Z, 
                 levels=np.linspace(3100, 3700, 13),
                 cmap=cm.gist_earth,
                 alpha=0.85)

# 绘制等高线
c_lines = plt.contour(X, Y, Z,
                     levels=np.linspace(3100, 3700, 13),
                     colors='black',
                     linewidths=0.6)

# 添加标签
plt.clabel(c_lines, 
          inline=True,
          fontsize=8,
          fmt='%d m')  # 添加高程标注

# 添加色标
cbar = plt.colorbar(cs)
cbar.set_label('高程(米)', rotation=270, labelpad=20)

# 设置地形图元素
plt.title('青海湖周边地形等高线模拟图', pad=20, fontsize=14)
plt.xlabel('东西向距离 (公里)')
plt.ylabel('南北向距离 (公里)')
plt.grid(linestyle=':', alpha=0.5)

# 标注特征区域
plt.text(-8, 10, '日月山脉', ha='left', va='center', 
        fontsize=9, color='#8B0000')
plt.annotate('青海湖水域', xy=(-1, 3), xytext=(-9, 5),
            arrowprops=dict(arrowstyle="->", color='navy'),
            fontsize=9, color='#00008B')

plt.tight_layout()
plt.show()

在这里插入图片描述


17. 3D 曲面图(3D Surface)

你没看错,Matplotlib也能画3D!

import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题

# 生成真实地形数据(模拟黄石公园44.5°N, 110.5°W区域)
x = np.linspace(-5, 5, 150)
y = np.linspace(-5, 5, 150)
X, Y = np.meshgrid(x, y)

# 高程函数(包含火山口与地热区特征)
Z = 2400 + 50*np.exp(-0.3*(X**2 + Y**2)) - 200*np.exp(-0.8*((X+1)**2 + (Y-0.5)**2)) 
Z += 30*np.sin(2*X) * np.cos(3*Y)

# 创建3D画布
fig = plt.figure(figsize=(14, 10))
ax = fig.add_subplot(111, projection='3d')

# 绘制曲面
surf = ax.plot_surface(X, Y, Z, 
                      cmap=cm.terrain,    # 地形专用色标
                      rstride=2,         # 行采样步长
                      cstride=2,         # 列采样步长
                      alpha=0.95,
                      antialiased=True,
                      linewidth=0.2,
                      edgecolor='#333333')

# 添加色标
cbar = fig.colorbar(surf, shrink=0.6, aspect=30)
cbar.set_label('高程 (米)', rotation=270, labelpad=25)

# 设置观测角度
ax.view_init(elev=35, azim=300)  # 35度俯角,300度方位角

# 添加标注
ax.set_xlabel('东西向 (公里)', labelpad=12)
ax.set_ylabel('南北向 (公里)', labelpad=12)
ax.set_zlabel('高程', labelpad=12)
ax.set_title('某国家公园地热区3D地形模型', y=0.98, fontsize=14)

# 添加地形特征标注
ax.text(-4, -4, 2600, '▲ 火山口', color='#8B0000', fontsize=9)
ax.text(1.5, 0.8, 2250, '地热喷泉区', color='#2F4F4F', fontsize=9)

# 优化显示效果
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis._axinfo["grid"].update({"linewidth":0.3, "color" : "#666666"})
ax.yaxis._axinfo["grid"].update({"linewidth":0.3, "color" : "#666666"})
ax.zaxis._axinfo["grid"].update({"linewidth":0.3, "color" : "#666666"})

plt.tight_layout()
plt.show()

在这里插入图片描述


18. 气泡图(Bubble Plot)

其实是散点图加强版,用大小表示变量大小。

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题


# 各省份数据(GDP单位:万亿元,人口单位:千万人)
provinces = [
    '广东', '江苏', '山东', '浙江', '河南',
    '四川', '湖北', '福建', '湖南', '安徽'
]
gdp = [12.91, 12.29, 8.74, 7.77, 6.13, 
       5.67, 5.37, 5.31, 4.87, 4.50]
population = [126.6, 85.1, 101.6, 65.4, 98.7,
              83.7, 58.3, 41.8, 66.4, 61.3]
per_capita_gdp = [10.2, 14.4, 8.6, 11.9, 6.2,
                  6.8, 9.2, 12.7, 7.3, 7.3]  # 单位:万元/人

# 创建画布
plt.figure(figsize=(14, 8))

# 绘制气泡图
scatter = plt.scatter(
    x=gdp,
    y=population,
    s=np.array(per_capita_gdp)*400,  # 气泡大小缩放
    c=np.arange(len(provinces)),      # 颜色映射
    cmap='tab20',
    alpha=0.8,
    edgecolors='white',
    linewidths=0.8
)

# 设置坐标轴
plt.title('xxxx主要省份经济数据气泡图', fontsize=14, pad=20)
plt.xlabel('GDP(万亿元)', labelpad=12)
plt.ylabel('人口(千万人)', labelpad=12)
plt.grid(linestyle=':', alpha=0.6)

# 设置坐标范围
plt.xlim(3, 14)
plt.ylim(30, 130)

plt.tight_layout()
plt.show()

在这里插入图片描述


19. 漏斗图(Funnel Chart)

展示“转化率”的神器。

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题


labels = ['访问', '注册', '激活', '付费']
values = [1000, 800, 400, 100]

plt.barh(labels, values)
plt.title('用户转化漏斗')
plt.show()

在这里插入图片描述


20. 动态图(Animation)

别说静态图无聊,Matplotlib也能动起来!

import matplotlib.pyplot as plt
import numpy as np
from matplotlib import animation

plt.rcParams['font.family'] = 'SimHei'  # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题

fig, ax = plt.subplots()
x = np.linspace(0, 2*np.pi, 128)
line, = ax.plot(x, np.sin(x))

def update(i):
    line.set_ydata(np.sin(x + i / 10.0))
    return line,

ani = animation.FuncAnimation(fig, update, frames=100, interval=50)
plt.title('动态正弦波')
plt.show()

在这里插入图片描述


最后说一句

可视化不仅仅是“画图”,更是讲故事的方式,是你用代码向世界展示洞察力的舞台。别只是盯着那些一眼看完的报表,有时候,一个图胜过千言万语。🎉

顺手点赞+在看就是对花姐最大的支持 ❤️

你最常用的是哪几种图?欢迎评论区留言告诉花姐!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花小姐的春天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值