我总结了20种最实用的Python图表,做数据可视化不用再抓狂了
花姐上线了!🌸
今天咱不聊鸡汤、不讲情怀,直接开整!花姐带你沉浸式体验 Python 可视化神器——Matplotlib的20种最常见图表玩法。
🔔 不管你是数据分析,机器学习,还是做周报、写PPT,只要掌握了这些图形,绝对是质的飞跃!
接下来,准备好你的 IDE,我们一个个上手敲起来!🎉
注:要想Matplotlib支持中文!代码跑之前记得加上👇这一行解决中文乱码问题:
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
如何你还没有安装matplotlib请打开你的终端(Terminal)或者命令行(cmd),直接敲:
pip install matplotlib
回车,喝口水,等一会儿,它自己就装好了。
1. 折线图(Line Chart)
常用于趋势变化,比如气温、股价、KPI变化啥的。
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
x = [1, 2, 3, 4, 5]
y = [3, 5, 7, 6, 9]
plt.plot(x, y, marker='o')
plt.title('每日访问量变化')
plt.xlabel('日期')
plt.ylabel('访问量')
plt.grid(True)
plt.show()
2. 条形图(Bar Chart)
横着比数据,适合分类比较。
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
categories = ['小红', '小明', '小刚', '小美']
scores = [90, 80, 75, 88]
plt.bar(categories, scores, color='skyblue')
plt.title('四人考试成绩对比')
plt.show()
3. 直方图(Histogram)
适合看数据分布,比如工资分布、身高、体重这些。
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
data = np.random.normal(170, 10, 200)
plt.hist(data, bins=20, color='orange', edgecolor='black')
plt.title('身高分布图')
plt.xlabel('身高')
plt.ylabel('人数')
plt.show()
4. 散点图(Scatter Plot)
两个变量之间的关系,看是否相关。
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
x = np.random.rand(100)
y = x + np.random.normal(0, 0.1, 100)
plt.scatter(x, y)
plt.title('学习时间 vs 成绩')
plt.xlabel('学习时间')
plt.ylabel('成绩')
plt.show()
5. 饼图(Pie Chart)
占比图!让老板看谁吃的预算多 😂
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
labels = ['广告', '运营', '人力', '技术']
sizes = [30, 20, 10, 40]
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
plt.title('部门预算占比')
plt.axis('equal')
plt.show()
6. 面积图(Area Chart)
比折线图多了一点“填充感”,也更直观。
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
x = range(1, 6)
y = [1, 3, 4, 8, 12]
plt.fill_between(x, y, color="lightgreen")
plt.plot(x, y, color="green")
plt.title('用户增长趋势')
plt.show()
7. 箱线图(Box Plot)
统计分析必备,帮你看离群值、上下四分位这些。
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
data = [np.random.normal(50, std, 100) for std in (5, 10, 20)]
plt.boxplot(data, patch_artist=True)
plt.title('三组数据分布对比')
plt.show()
8. 热力图(Heatmap)
用颜色来表现数值大小,强烈推荐结合seaborn
!
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
data = np.random.rand(6, 6)
sns.heatmap(data, annot=True)
plt.title('热力图示例')
plt.show()
9. 雷达图(Radar Chart)
多维指标一图展示,简历必备,别说我没告诉你 💡
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
labels = ['沟通', '编码', '学习', '抗压', '责任心']
stats = [8, 9, 7, 6, 8]
angles = np.linspace(0, 2*np.pi, len(labels), endpoint=False).tolist()
stats += stats[:1]
angles += angles[:1]
fig, ax = plt.subplots(subplot_kw={'polar': True})
ax.plot(angles, stats, 'o-', linewidth=2)
ax.fill(angles, stats, alpha=0.25)
ax.set_thetagrids(np.degrees(angles[:-1]), labels)
plt.title('我的技能雷达图')
plt.show()
10. 极坐标图(Polar Chart)
散点+极坐标,视觉冲击感超强。
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
r = np.linspace(0, 1, 100)
theta = 2 * np.pi * r
plt.polar(theta, r)
plt.title('极坐标示例')
plt.show()
11. 双轴图(Dual Axis)
两个Y轴,两个变量共用一个X轴,超实用。
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
# 数据
months = ['1月','2月','3月','4月','5月','6月','7月','8月','9月','10月','11月','12月']
sales = [120, 150, 200, 180, 220, 260, 240, 300, 320, 310, 400, 500]
new_users = [3500, 3800, 4200, 4000, 5000, 5200, 4800, 6000, 6300, 6200, 7500, 8000]
fig, ax1 = plt.subplots(figsize=(10,6))
# 左轴:销售额
color = 'tab:blue'
ax1.set_xlabel('月份')
ax1.set_ylabel('销售额(万元)', color=color)
ax1.plot(months, sales, color=color, marker='o', label='销售额')
ax1.tick_params(axis='y', labelcolor=color)
# 右轴:新注册用户
ax2 = ax1.twinx()
color = 'tab:red'
ax2.set_ylabel('新注册用户(人)', color=color)
ax2.plot(months, new_users, color=color, marker='s', linestyle='--', label='新注册用户')
ax2.tick_params(axis='y', labelcolor=color)
plt.title('某电商平台2024年月度销售额与新注册用户')
ax1.grid(True)
plt.show()
12. 折线图+散点图混搭(Line + Scatter)
增强折线图表达力的小技巧!
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
# 折线数据
months = ['1月','2月','3月','4月','5月','6月','7月','8月','9月','10月','11月','12月']
avg_price = [18500, 18700, 19000, 18800, 19200, 19400, 19500, 19800, 20000, 20200, 20500, 21000]
# 散点数据
special_months = ['3月', '6月', '8月', '11月']
special_price = [21000, 22000, 23000, 25000]
fig, ax = plt.subplots(figsize=(10,6))
# 画折线图
ax.plot(months, avg_price, color='blue', marker='o', label='平均房价(元/㎡)')
# 画散点图
ax.scatter(special_months, special_price, color='red', s=100, marker='*', label='特殊成交(元/㎡)')
plt.title('2024年某小区月均房价及特殊成交记录')
plt.xlabel('月份')
plt.ylabel('价格(元/㎡)')
plt.legend()
plt.grid(True)
plt.show()
13. 阶梯图(Step Plot)
适合描述“突变”的情况,比如电费、分段计价那种。
import matplotlib.pyplot as plt
from datetime import datetime
import matplotlib.dates as mdates
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
# 数据
dates = ['2023-10-01', '2023-10-02', '2023-10-03',
'2023-10-04', '2023-10-05', '2023-10-06', '2023-10-07']
temperatures = [22, 23, 20, 19, 18, 20, 21]
# 转换日期格式
dates = [datetime.strptime(d, '%Y-%m-%d') for d in dates]
# 创建图表
plt.figure(figsize=(10, 6))
# 绘制阶梯图(post样式的阶梯变化)
plt.step(
dates,
temperatures,
where='post', # 阶梯在数据点后变化
color='#E64A45', # 中国红配色
linewidth=2.5,
marker='o', # 添加数据点标记
markersize=8,
markerfacecolor='white',
markeredgewidth=2,
label='每日最高气温'
)
# 添加标题和标签
plt.title('北京市国庆期间气温变化(2024年10月1-7日)', fontsize=14, pad=20)
plt.xlabel('日期', fontsize=12)
plt.ylabel('温度 (°C)', fontsize=12)
# 配置坐标轴
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m/%d'))
plt.gca().xaxis.set_major_locator(mdates.DayLocator())
plt.xticks(rotation=30)
plt.ylim(15, 25)
# 添加辅助元素
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.legend(loc='upper left', frameon=False)
plt.show()
14. 饼图 + 中心洞(环形图)
视觉更舒服,直接用wedgeprops
搞定。
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
# 数据
categories = [
'煤炭',
'石油',
'天然气',
'可再生能源\n(水电/风电/光伏)'
]
percentages = [56.2, 18.5, 9.4, 15.9]
colors = [
'#6D8698', # 灰蓝(煤炭)
'#BE7352', # 棕褐(石油)
'#8FA6A2', # 青灰(天然气)
'#8FB3B0' # 浅绿(可再生能源)
]
# 创建带中心洞的环形图
fig, ax = plt.subplots(figsize=(8, 8))
wedges, texts, autotexts = ax.pie(
percentages,
wedgeprops={
'width': 0.5, # 环宽=半径的50%
'edgecolor': 'white', # 白色分割线
'linewidth': 1.5 # 分割线粗细
},
colors=colors,
startangle=90, # 起始角度(12点方向)
autopct='%1.1f%%', # 百分比格式
pctdistance=0.85 # 百分比标签位置(0.85倍半径)
)
# 设置百分比标签样式
for autotext in autotexts:
autotext.set_color('white')
autotext.set_fontsize(10)
autotext.set_weight('bold')
# 添加中心标题
ax.text(
0, 0,
'XX国能源结构\n2024',
ha='center',
va='center',
fontsize=16,
fontweight='bold',
color='#2F4F4F'
)
# 添加图例(带透明度效果)
legend = ax.legend(
wedges,
categories,
title="能源类型",
loc="center left",
bbox_to_anchor=(1, 0, 0.5, 1),
frameon=False,
labelspacing=1.2
)
legend.get_title().set_fontweight('bold')
# 设置长宽比保证正圆形
ax.axis('equal')
plt.tight_layout()
plt.show()
15. 误差线图(Error Bar)
实验、分析场景常用。
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
# 数据 (单位:万辆)
quarters = ['Q1', 'Q2', 'Q3', 'Q4']
avg_sales = [158.6, 173.2, 204.6, 227.4] # 季度平均销量
std_dev = [8.2, 9.5, 11.3, 13.1] # 各季度销量标准差
# 创建带误差线的散点图
plt.figure(figsize=(10, 6))
# 主绘图语句
main_line = plt.errorbar(
x=quarters,
y=avg_sales,
yerr=std_dev, # 误差线数据
fmt='o-', # 点线组合
markersize=10,
markerfacecolor='#2E86C1',
markeredgecolor='white',
elinewidth=2, # 误差线粗细
ecolor='#E74C3C', # 误差线颜色
capsize=8, # 误差线顶端横杠长度
linewidth=2.5,
label='平均销量 ± 标准差'
)
# 添加数据标签
for i, (v, s) in enumerate(zip(avg_sales, std_dev)):
plt.text(i, v + 15,
f'{v}±{s}',
ha='center',
fontsize=10,
bbox=dict(facecolor='white', alpha=0.8))
# 可视化优化
plt.title('2024年中国新能源汽车季度销量误差分析', fontsize=14, pad=20)
plt.ylabel('销量 (万辆)', labelpad=12)
plt.ylim(120, 260)
plt.grid(axis='y', linestyle='--', alpha=0.6)
# 添加图例
leg = plt.legend(loc='upper left')
leg.get_frame().set_linewidth(0.0) # 移除图例边框
plt.tight_layout()
plt.show()
16. 等高线图(Contour Plot)
展示函数值随二维变量变化的趋势。
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题
# 生成地形数据(模拟青海湖周边区域 20x20公里)
x = np.linspace(-10, 10, 200)
y = np.linspace(-8, 12, 200)
X, Y = np.meshgrid(x, y)
# 高程函数(包含湖盆与山脉特征)
Z = 3200 + 50*Y - 40*X**2 + 30*np.sin(2*X) + 45*np.exp(-(X**2 + Y**2)/25)
# 创建画布
plt.figure(figsize=(12, 8))
# 绘制填充等高线
cs = plt.contourf(X, Y, Z,
levels=np.linspace(3100, 3700, 13),
cmap=cm.gist_earth,
alpha=0.85)
# 绘制等高线
c_lines = plt.contour(X, Y, Z,
levels=np.linspace(3100, 3700, 13),
colors='black',
linewidths=0.6)
# 添加标签
plt.clabel(c_lines,
inline=True,
fontsize=8,
fmt='%d m') # 添加高程标注
# 添加色标
cbar = plt.colorbar(cs)
cbar.set_label('高程(米)', rotation=270, labelpad=20)
# 设置地形图元素
plt.title('青海湖周边地形等高线模拟图', pad=20, fontsize=14)
plt.xlabel('东西向距离 (公里)')
plt.ylabel('南北向距离 (公里)')
plt.grid(linestyle=':', alpha=0.5)
# 标注特征区域
plt.text(-8, 10, '日月山脉', ha='left', va='center',
fontsize=9, color='#8B0000')
plt.annotate('青海湖水域', xy=(-1, 3), xytext=(-9, 5),
arrowprops=dict(arrowstyle="->", color='navy'),
fontsize=9, color='#00008B')
plt.tight_layout()
plt.show()
17. 3D 曲面图(3D Surface)
你没看错,Matplotlib也能画3D!
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题
# 生成真实地形数据(模拟黄石公园44.5°N, 110.5°W区域)
x = np.linspace(-5, 5, 150)
y = np.linspace(-5, 5, 150)
X, Y = np.meshgrid(x, y)
# 高程函数(包含火山口与地热区特征)
Z = 2400 + 50*np.exp(-0.3*(X**2 + Y**2)) - 200*np.exp(-0.8*((X+1)**2 + (Y-0.5)**2))
Z += 30*np.sin(2*X) * np.cos(3*Y)
# 创建3D画布
fig = plt.figure(figsize=(14, 10))
ax = fig.add_subplot(111, projection='3d')
# 绘制曲面
surf = ax.plot_surface(X, Y, Z,
cmap=cm.terrain, # 地形专用色标
rstride=2, # 行采样步长
cstride=2, # 列采样步长
alpha=0.95,
antialiased=True,
linewidth=0.2,
edgecolor='#333333')
# 添加色标
cbar = fig.colorbar(surf, shrink=0.6, aspect=30)
cbar.set_label('高程 (米)', rotation=270, labelpad=25)
# 设置观测角度
ax.view_init(elev=35, azim=300) # 35度俯角,300度方位角
# 添加标注
ax.set_xlabel('东西向 (公里)', labelpad=12)
ax.set_ylabel('南北向 (公里)', labelpad=12)
ax.set_zlabel('高程', labelpad=12)
ax.set_title('某国家公园地热区3D地形模型', y=0.98, fontsize=14)
# 添加地形特征标注
ax.text(-4, -4, 2600, '▲ 火山口', color='#8B0000', fontsize=9)
ax.text(1.5, 0.8, 2250, '地热喷泉区', color='#2F4F4F', fontsize=9)
# 优化显示效果
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis._axinfo["grid"].update({"linewidth":0.3, "color" : "#666666"})
ax.yaxis._axinfo["grid"].update({"linewidth":0.3, "color" : "#666666"})
ax.zaxis._axinfo["grid"].update({"linewidth":0.3, "color" : "#666666"})
plt.tight_layout()
plt.show()
18. 气泡图(Bubble Plot)
其实是散点图加强版,用大小表示变量大小。
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题
# 各省份数据(GDP单位:万亿元,人口单位:千万人)
provinces = [
'广东', '江苏', '山东', '浙江', '河南',
'四川', '湖北', '福建', '湖南', '安徽'
]
gdp = [12.91, 12.29, 8.74, 7.77, 6.13,
5.67, 5.37, 5.31, 4.87, 4.50]
population = [126.6, 85.1, 101.6, 65.4, 98.7,
83.7, 58.3, 41.8, 66.4, 61.3]
per_capita_gdp = [10.2, 14.4, 8.6, 11.9, 6.2,
6.8, 9.2, 12.7, 7.3, 7.3] # 单位:万元/人
# 创建画布
plt.figure(figsize=(14, 8))
# 绘制气泡图
scatter = plt.scatter(
x=gdp,
y=population,
s=np.array(per_capita_gdp)*400, # 气泡大小缩放
c=np.arange(len(provinces)), # 颜色映射
cmap='tab20',
alpha=0.8,
edgecolors='white',
linewidths=0.8
)
# 设置坐标轴
plt.title('xxxx主要省份经济数据气泡图', fontsize=14, pad=20)
plt.xlabel('GDP(万亿元)', labelpad=12)
plt.ylabel('人口(千万人)', labelpad=12)
plt.grid(linestyle=':', alpha=0.6)
# 设置坐标范围
plt.xlim(3, 14)
plt.ylim(30, 130)
plt.tight_layout()
plt.show()
19. 漏斗图(Funnel Chart)
展示“转化率”的神器。
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题
labels = ['访问', '注册', '激活', '付费']
values = [1000, 800, 400, 100]
plt.barh(labels, values)
plt.title('用户转化漏斗')
plt.show()
20. 动态图(Animation)
别说静态图无聊,Matplotlib也能动起来!
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import animation
plt.rcParams['font.family'] = 'SimHei' # 黑体支持中文
plt.rcParams['axes.unicode_minus'] = False # 解决负数乱码问题
fig, ax = plt.subplots()
x = np.linspace(0, 2*np.pi, 128)
line, = ax.plot(x, np.sin(x))
def update(i):
line.set_ydata(np.sin(x + i / 10.0))
return line,
ani = animation.FuncAnimation(fig, update, frames=100, interval=50)
plt.title('动态正弦波')
plt.show()
最后说一句
可视化不仅仅是“画图”,更是讲故事的方式,是你用代码向世界展示洞察力的舞台。别只是盯着那些一眼看完的报表,有时候,一个图胜过千言万语。🎉
顺手点赞+在看就是对花姐最大的支持 ❤️
你最常用的是哪几种图?欢迎评论区留言告诉花姐!