10个常用Python库,助你高效处理Excel文件与办公自动化
大家好我是花姐,今天我们来聊聊Python处理Excel相关库的话题。
相信,很多职场人都会觉得“处理Excel不是Excel本身就能搞定吗?为什么还需要Python?”嗯,说实话,一开始我也这么觉得。直到有一天,老板让我把几百份Excel数据合起来做统计的时候,原本几天的工作量我用Python小半天就搞定了。所以掌握点Python自动化的小技能真的能帮我们大忙。
好了,废话不多说,我们开始进入正题。以下是10个常用的Python库及其操作方法,建议收藏起来慢慢看。
1. Pandas — 最常用的库
Pandas是我们处理Excel文件时的超级大杀器,尤其是在涉及到数据分析时。如果你还没用过Pandas,先说好,未来你很可能会爱上它。Pandas不仅能读取、写入Excel,还能快速进行数据清洗、分析,简直是数据科学家必备的利器。
常用操作:
import pandas as pd
# 读取Excel文件
df = pd.read_excel('example.xlsx', sheet_name='Sheet1')
# 数据清理:例如删除NaN值
df = df.dropna()
# 写入Excel
df.to_excel('output.xlsx', index=False)
Pandas的read_excel
和to_excel
方法能让你快速读写Excel,尤其是如果数据较大,Pandas在内存操作上的高效性让它成为必备工具。
2. Openpyxl — 操控Excel文件的得力助手
Openpyxl是另一个流行的库,主要用来读取和写入Excel .xlsx
格式的文件。相比Pandas,它更注重单元格内容的操作,能处理样式、公式等。
常用操作:
from openpyxl import load_workbook
# 读取工作簿
wb = load_workbook('example.xlsx')
# 获取活动工作表
sheet = wb.active
# 读取单元格
print(sheet['A1'].value)
# 修改单元格内容
sheet['A1']