卡特兰数(Catalan Numbers) 题单

卡特兰数

在这里插入图片描述
在这里插入图片描述

几个典型问题

  • 凸多边形三角形划分
    对应乘法原理的解释
    实例:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数。
  • 括号分配
    有两类东西(左括号,右括号),其关系为必须现有足够的 “左括号”,才能有 “右括号”。比如有100,50两种面额钞票,售票处没线,票价50,必须现收50的,才能找开100的。
    即有等量的 x, y,始终要保持 x >= y (取等很关键
    再来一例:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路。
  • 出栈次序
  • 构造二叉搜索树

计算

  1. h ( i ) = h ( i - 1 ) * ( 4 * i - 2 ) / ( i + 1 )
  2. h ( i ) = C ( 2 * i , i ) / i + 1
  3. h ( i ) = C ( 2 * i , i ) - C ( 2 * i , i - 1 )
    以上算式中的 C ( n , m ) 代表组合数

洛谷题目:
1722
1976
1754
2532
4981
3200
5014
等,写完还愿

luogu 1754 球迷购票
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n;
long long dp[50][50];

int main()
{
	cin>>n; 
	dp[1][0] = 1, dp[1][1] = 0;
	for (int i=2; i<=2*n; i++){
		for(int j=0; j<=min(i/2, n); j++) {
			dp[i][j] += dp[i-1][j];
			if (j && (i-1) > 2*(j-1)) dp[i][j] += dp[i-1][j-1]; 
		//	cout<<"dp["<<i<<","<<j<<"] = "<<dp[i][j]<<endl;
		}
	}
	cout<<dp[2*n][n]<<endl;
	return 0;
}  
// Catalan 数 , n 指的是 n 对括号
#include<iostream>
using namespace std;
long long n, h[50];
int main()
{
	cin>>n; 
	h[0] = h[1] = 1;
	for (long long i=2; i<=n; i++) h[i] = (h[i-1] * (4*i - 2)) / (i+1);
	cout<<h[n]<<endl;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值