卡特兰数
几个典型问题
- 凸多边形三角形划分
对应乘法原理的解释
实例:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数。- 括号分配
有两类东西(左括号,右括号),其关系为必须现有足够的 “左括号”,才能有 “右括号”。比如有100,50两种面额钞票,售票处没线,票价50,必须现收50的,才能找开100的。
即有等量的 x, y,始终要保持 x >= y (取等很关键
再来一例:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路。- 出栈次序
- 构造二叉搜索树
计算
- h ( i ) = h ( i - 1 ) * ( 4 * i - 2 ) / ( i + 1 )
- h ( i ) = C ( 2 * i , i ) / i + 1
- h ( i ) = C ( 2 * i , i ) - C ( 2 * i , i - 1 )
以上算式中的 C ( n , m ) 代表组合数
洛谷题目:
1722
1976
1754
2532
4981
3200
5014
等,写完还愿
luogu 1754 球迷购票
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n;
long long dp[50][50];
int main()
{
cin>>n;
dp[1][0] = 1, dp[1][1] = 0;
for (int i=2; i<=2*n; i++){
for(int j=0; j<=min(i/2, n); j++) {
dp[i][j] += dp[i-1][j];
if (j && (i-1) > 2*(j-1)) dp[i][j] += dp[i-1][j-1];
// cout<<"dp["<<i<<","<<j<<"] = "<<dp[i][j]<<endl;
}
}
cout<<dp[2*n][n]<<endl;
return 0;
}
// Catalan 数 , n 指的是 n 对括号
#include<iostream>
using namespace std;
long long n, h[50];
int main()
{
cin>>n;
h[0] = h[1] = 1;
for (long long i=2; i<=n; i++) h[i] = (h[i-1] * (4*i - 2)) / (i+1);
cout<<h[n]<<endl;
return 0;
}