清北4

T1:
transact
贪心策略:将耐心度小的放前边,耐心度相同的,将需要时间小的放前面。
最后计算每人的不满意度。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=101000;
typedef long long ll;
int read()
{
	int res=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		res=res*10+ch-'0';
		ch=getchar();
	}
	return res*f;
}
struct node
{
	int t;
	ll d;
}a[maxn];
ll sum,maxx;
int n;
bool v[maxn];
int cmp(node x,node y)
{
	if(x.d<y.d) return 1;
	if(x.d==y.d&&x.t<y.t) return 1;
	return 0;
}
int main()
{
	freopen("transact.in","r",stdin);
	freopen("transact.out","w",stdout);
	n=read();
	for(int i=1;i<=n;i++)
	a[i].t=read();
	for(int i=1;i<=n;i++)
	a[i].d=read();
	sort(a+1,a+n+1,cmp);
	for(int i=1;i<=n;i++)
	{
		sum+=a[i].t;
		maxx=max(maxx,sum-a[i].d);
	}
	cout<<maxx;
	fclose(stdin);
	fclose(stdin);
	return 0;
}

T2:
pass:
由题意可知每个点的出度都是1,并且在图中最少存在一个环。先假设图是一个环,
我们求出这个环的总长度,减去最短的一条边。
当这个环上有其他边时,这个边一定是从一个入读为0的点传过来的,所以可以先把每一个入读为零的点存入栈中,依次处理。用一个数组f[i]储存到第i点的最长路径的大小。
每次从栈中取出一个点,更新下一个点的f值,减去下一个点的入读。若减为零,则加入栈中。最后将只剩下环中的点。
枚举每一个点看看是否在环中,若在dfs,记录下环中每个点,这个点前一个边的长短,环的大小,再将这些点标记上,枚举这些点,算出路径大小,更新最终答案。
在一个图中可能有许多环,但是这些环是互不联通的,所以当成一个环做即可。

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=501000;
typedef long long ll;
int read()
{
	int res=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch<='9'&&ch>='0')
	{
		res=res*10+ch-'0';
		ch=getchar();
	}
	return res*f;
}
int n,t;
ll  ans;
int f[maxn];
int a[maxn];
int d[maxn];
int in[maxn];
int st[maxn];
int vis[maxn];
int pre[maxn];
int main()
{
	freopen("pass.in","r",stdin);
	freopen("pass.out","w",stdout);
	n=read();
	for(int i=1;i<=n;i++)
	{
		a[i]=read();d[i]=read();
		in[a[i]]++;
	}
	for(int i=1;i<=n;i++)
		if(!in[i]) st[++t]=i;
	int l=0;
	while(l<t)
	{
		int k=st[++l];
		if(f[k]+d[k]>f[a[k]]) f[a[k]]=f[k]+d[k];	
		in[a[k]]--;
		if(!in[a[k]])st[++t]=a[k];
	}
	for(int i=1;i<=n;i++)
	{
		if(in[i]>0&&!vis[i])
		{
			int k=i;
		    ll cc=0;
			t=0;
			do
			{
				vis[k]=1;
				cc+=d[k];
				pre[a[k]]=d[k];
				st[++t]=k;
				k=a[k];
			}
			while(k!=i);
			for(int j=1;j<=t;j++)
			{
				ll tmp=cc-pre[st[j]]+f[st[j]];
				if(tmp>ans) ans=tmp;
			}
		}
	}
	cout<<ans;
	fclose(stdin);
	fclose(stdout);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值