T1:
transact
贪心策略:将耐心度小的放前边,耐心度相同的,将需要时间小的放前面。
最后计算每人的不满意度。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=101000;
typedef long long ll;
int read()
{
int res=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
res=res*10+ch-'0';
ch=getchar();
}
return res*f;
}
struct node
{
int t;
ll d;
}a[maxn];
ll sum,maxx;
int n;
bool v[maxn];
int cmp(node x,node y)
{
if(x.d<y.d) return 1;
if(x.d==y.d&&x.t<y.t) return 1;
return 0;
}
int main()
{
freopen("transact.in","r",stdin);
freopen("transact.out","w",stdout);
n=read();
for(int i=1;i<=n;i++)
a[i].t=read();
for(int i=1;i<=n;i++)
a[i].d=read();
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
{
sum+=a[i].t;
maxx=max(maxx,sum-a[i].d);
}
cout<<maxx;
fclose(stdin);
fclose(stdin);
return 0;
}
T2:
pass:
由题意可知每个点的出度都是1,并且在图中最少存在一个环。先假设图是一个环,
我们求出这个环的总长度,减去最短的一条边。
当这个环上有其他边时,这个边一定是从一个入读为0的点传过来的,所以可以先把每一个入读为零的点存入栈中,依次处理。用一个数组f[i]储存到第i点的最长路径的大小。
每次从栈中取出一个点,更新下一个点的f值,减去下一个点的入读。若减为零,则加入栈中。最后将只剩下环中的点。
枚举每一个点看看是否在环中,若在dfs,记录下环中每个点,这个点前一个边的长短,环的大小,再将这些点标记上,枚举这些点,算出路径大小,更新最终答案。
在一个图中可能有许多环,但是这些环是互不联通的,所以当成一个环做即可。
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=501000;
typedef long long ll;
int read()
{
int res=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') f=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0')
{
res=res*10+ch-'0';
ch=getchar();
}
return res*f;
}
int n,t;
ll ans;
int f[maxn];
int a[maxn];
int d[maxn];
int in[maxn];
int st[maxn];
int vis[maxn];
int pre[maxn];
int main()
{
freopen("pass.in","r",stdin);
freopen("pass.out","w",stdout);
n=read();
for(int i=1;i<=n;i++)
{
a[i]=read();d[i]=read();
in[a[i]]++;
}
for(int i=1;i<=n;i++)
if(!in[i]) st[++t]=i;
int l=0;
while(l<t)
{
int k=st[++l];
if(f[k]+d[k]>f[a[k]]) f[a[k]]=f[k]+d[k];
in[a[k]]--;
if(!in[a[k]])st[++t]=a[k];
}
for(int i=1;i<=n;i++)
{
if(in[i]>0&&!vis[i])
{
int k=i;
ll cc=0;
t=0;
do
{
vis[k]=1;
cc+=d[k];
pre[a[k]]=d[k];
st[++t]=k;
k=a[k];
}
while(k!=i);
for(int j=1;j<=t;j++)
{
ll tmp=cc-pre[st[j]]+f[st[j]];
if(tmp>ans) ans=tmp;
}
}
}
cout<<ans;
fclose(stdin);
fclose(stdout);
return 0;
}