合并集合
这个数据结构适合做的事
树根是集合的标志点,用来识别不同的集合(不一定要写成二叉树)
基本原理:每个集合用一棵树来表示,树根的编号就是整个集合的编号。每个结点存储他的父节点,p[x]表示x的父节点
优化:路径压缩
从x往上找找到根节点之后,将经过的路径上的结点的指向全部直接改成找到的根节点
还有一个优化叫做按值优化,有兴趣自己搜,用处不大
#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
#include<unordered_map>
using namespace std;
const int N = 100010;
int n, m;
int p[N];
int find(int x) //返回x的父亲节点,并且实现压缩路径优化
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
char op;
int a, b;
for (int i = 0; i < n; i++) p[i] = i;
while (m--)
{
cin >> op >> a >> b;
if (op == 'M') p[find(a)] = find(b);
else if (op == 'Q')
if (find(a) == find(b)) cout << "Yes" << endl;
else cout << "No" << endl;
}
return 0;
}
连通块中点的数量
#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
#include<unordered_map>
using namespace std;
const int N = 100010;
int m, n;
int p[N], siz[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
char op[2];
cin >> n >> m;
int a, b;
for (int i = 1; i <= n; i++)
{
p[i] = i;
siz[i] = 1;
}
while (m--)
{
cin >> op;
if (op[0] == 'C')
{
cin >> a >> b;
if (find(a)!= find(b))
{
siz[find(b)] += siz[find(a)];
p[find(a)] = find(b);
}
}
else if (op[0] == 'Q')
{
if (op[1] == '1')
{
cin >> a >> b;
if (find(a) == find(b))
cout << "Yes" << endl;
else
cout << "No" << endl;
}
else
{
cin >> a;
cout << siz[find(a)]<<endl;
}
}
}
return 0;
}
这里需要特别判断一下,要不就会重复加
食物链
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 100010;
int n,m;
int p[N],d[N];
int find(int x)
{
if(p[x] != x)
{
int t = find(p[x]);
d[x] += d[p[x]];//
p[x] = t;//
}
return p[x];
}
int main()
{
cin>>n>>m;
for(int i = 1 ; i <= n ; i ++ ) p[i] = i;
int res = 0;
while(m--)
{
int t,x,y;
cin>>t>>x>>y;
if (x > n || y > n ) res ++;
else
{
int px = find(x);
int py = find(y);
if(t == 1)
{
if(px == py && (d[x] - d[y]) % 3 ) res++;
else if(px != py )
{
p[px] = py;
d[px] = d[y] - d[x];
}
}
else
{
if(px == py && (d[x] - d[y] - 1) % 3 ) res++;
else if(px != py )
{
p[px] = py;
d[px] = d[y] - d[x] + 1;
}
}
}
}
cout<<res<<endl;
return 0;
}