Pytorch-CycleGan-and-pix2pix-master数据训练与测试步骤

一、代码框架认识

二、开源数据与预训练模型下载

1.开源测试图像:https://efrosgans.eecs.berkeley.edu/pix2pix/datasets/

https://efrosgans.eecs.berkeley.edu/pix2pix/datasets/

图像数据结构,包含训练集、验证集,测试集根据需要。

图像数据存放在:  ./datasets/

2.预训练模型:https://efrosgans.eecs.berkeley.edu/pix2pix/models-pytorch/

模型存放路径

将模型名称改为:latest_net_G.pth,以便进行测试调用模型。

三、自建数据集训练pix2pix模型

1.训练前图像数据拼接

建立文件夹A和文件夹B,A和B存放对齐的两组数据。例如:

文件夹A路径:F:\YoloWorkData\gds2mask\gds_A

文件夹B路径:F:\YoloWorkData\gds2mask\mask_B

调用datasets/combine_A_and_B.py,将A和B中相同文件名的一对图像进行拼接,合成AB。

文件夹AB路径:F:\YoloWorkData\gds2mask\gds2mask_AB

python datasets/combine_A_and_B.py --fold_A F:\YoloWorkData\gds2mask\gds_A --fold_B F:\YoloWorkData\gds2mask\mask_B --fold_AB F:\YoloWorkData\gds2mask\gds2mask_AB --num_imgs 40

2.数据文件分类整理

将合并的图像进行训练集和验证集分类。

|--.../pytorch-CycleGAN-and-pix2pix-master/datasets/gds2mask_AB(生成的拼接图)

|         |--train

|         |--val

|         |--test

3.开始训练

3.1.打开可视化界面

python -m visdom.server

打开网页http://localhost:8097/

3.2.修改base_options.py代码

常见需要需要修改的内容:

--dataroot:数据集的目录,设置为刚刚拼接后的目录.../pytorch-CycleGAN-and-pix2pix-                                                                                        master/datasets/gds2mask_AB

--name : 训练数据存放文件夹名称,路径在.../checkpoints/name

--use_wandb:设置wandb,填入default=False设置不适用wandb;
--model:选择模型pix2pix ,可以选择cycle_gan | pix2pix | test | colorization;
--input_nc:输入通道数,3是RGB,1是灰度
--output_nc:输出通道数,3是RGB,1是灰度
--dataset_mode:数据模式,unaligned | aligned | single | colorization,pix2pix 的默认会设置为-----aligned,修不修改都可以。
--direction:数据生成方向,是A生成B(左→右),还是B生成A(右→左)

3.2.执行训练命令

train.py

http://localhost:8097/中显示训练曲线与过程结果。

训练结果在.../checkpoints/name下。

四、测试训练模型

测试输入图像,也需要是AB拼接图

Terminal中输入

python test.py --dataroot ./datasets/gds2mask_AB --direction AtoB --model pix2pix --name gds2mask

--dataroot:测试数据路径,自动检测test文件夹 ./datasets/gds2mask_AB。

--direction :数据生成方向,AtoB。

--model :数据模式,pix2pix。

--name :模型存文件夹(base_options中设置),默认使用latest_net_G.pth文件。

测试结果,保存在.../result/name 中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值