题目
给定一个整数 n,生成所有由 1 … n 为节点所组成的 二叉搜索树 。
示例:
输入:3
输出:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
解释:
以上的输出对应以下 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
提示:
0 <= n <= 8
解题思路
- 1)定义 generate(start, end) 函数表示当前值的集合为 [start,end],返回序列[start,end] 生成的所有可行的二叉搜索树。
- 2)考虑枚举[start,end] 中的值 i 为当前二叉搜索树的根,那么序列划分为了 [start,i−1] 和 [i+1,end] 两部分。
- 3)递归调用这两部分,即 generate(start, i - 1) 和 generate(i + 1, end),获得所有可行的左子树和可行的右子树,最后从可行左子树集合中选一棵,再从可行右子树集合中选一棵拼接到根节点上,并将生成的二叉搜索树放入答案数组即可。
- 4)递归的入口即为 generate(1, n),出口为当 start>end 的时候,当前二叉搜索树为空,返回空节点即可。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<TreeNode> generateTrees(int n) {
if(n<=0){
return new LinkedList<>();
}
return generate(1, n);
}
private List<TreeNode> generate(int start, int end){
List<TreeNode> treeList = new LinkedList<>();
if(start>end){
treeList.add(null);
return treeList;
}
// 枚举所有根节点
for(int i=start; i<=end; i++){
// 左子树集合
List<TreeNode> leftTrees = generate(start, i-1);
// 右子树集合
List<TreeNode> rightTrees = generate(i+1, end);
for(TreeNode leftTree : leftTrees){
for(TreeNode rightTree : rightTrees){
TreeNode curTree = new TreeNode(i);
curTree.left = leftTree;
curTree.right = rightTree;
treeList.add(curTree);
}
}
}
return treeList;
}
}