题目
我们把只包含质因子 2、3 和 5 的数称作丑数(Ugly Number)。求按从小到大的顺序的第 n 个丑数。
示例:
输入: n = 10
输出: 12
解释: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 是前 10 个丑数。
说明:
1
是丑数。n
不超过1690。
解题思路
要算出第n个丑数是多少,需要先算出前n-1个丑数。首先1是丑数,那么1乘以2,3,5得到的乘积也肯定是丑数,也就是说每一个已知的丑数,乘上2,3,5之后都会得到3个更大的丑数(可能有重复)。
由于题目要求丑数的顺序是从小到大排序,那么我们就把已知的丑数先写出来,每个丑数占一行,而和2,3,5的乘积的丑数就作为列,放到同一行上,如下所示:
i | a b c
1 | 2 3 5 // 2,3,5 分别是1的三个乘积
2 | 4 6 10 // 4,6,10 分别是2的三个乘积
3 | 6 9 15
4 | 8 12 20
5 | 10 15 25
6 | 12 18 30
8 | 16 24 40
每一个数组都是从左往右递增,从上往下递增,我们设置三个指针a,b,c,分别指向第0行的1,2,3列。之后只要把三个指针所在位置的元素做个对比,取最小的那个元素,就是下一个丑数了。接着将这个指针往下移动,直到指向的元素都大于已知丑数才可以停下来,再继续比较。
复杂度分析:
时间复杂度:O(N)。其中 N=n ,动态规划需遍历计算 dp 数组。
空间复杂度:O(N)。长度为 N 的 dp 数组使用 O(N) 的额外空间。
代码
class Solution {
public int nthUglyNumber(int n) {
if(n<=0){
return 0;
}
int[] dp = new int[n];
dp[0] = 1;
int a = 0, b = 0, c = 0;
int i = 1;
while(i<n){
dp[i] = Math.min(Math.min(dp[a]*2, dp[b]*3), dp[c]*5);
while(dp[a]*2<=dp[i]){
a++;
}
while(dp[b]*3<=dp[i]){
b++;
}
while(dp[c]*5<=dp[i]){
c++;
}
i++;
}
return dp[n-1];
}
}