我们在学习推荐系统的时候,最好是理论结合项目一起来做,项目能直接检验学习的理论知识。我觉得推荐系统算法和其他深度学习算法不一样的点在于:推荐系统算法有比较多的项目可以去练手(就是说推荐系统算法的应用更大众化,模型应用广泛,训练数据更多。)
本文将从推荐系统理论知识,到经典算法,到模型应用和大家详细说一说。(最后会给大家总结一个学习路径,需要的自取)
推荐系统发展
分类目录👉搜索引擎👉推荐系统
推荐系统能做的
推荐系统能够主动为我们提供千人千面、个性化服务
电商:据说亚马逊收入至少有35%来自推荐算法;
应用:QQ音乐的个性电台的歌曲推荐,网易云音乐的每日推荐,歌单库等;(信息过载,无明确需求,用户反馈)
信息流:信息流广告通过历史浏览数据优化点击率,转化率来展现用户想看的,同时最大化平台收入。
国际惯例先做个推荐(恰饭)别走,后面还有货。给大家争取来的推荐系统福利,原价399的课推荐系统基础课,现在扫码领券9.9就能学!!详细课程内容见下方海报👇

推荐系统架构
逻辑架构

技术架构
模型部分

数据部分

为什么需要多轮排序?
主要还是资源有限,DNN模型相对预估更准确,但是耗时较长,当推荐系统一次请求返回延时百毫秒内,无法使用复杂模型排序大候选集。
架构实施
从
模型部署,模型更新,离线/在线评估,AB实验
到
模型线上服务TF_Serving、PMML等,训练新数据,离线/在线评估指标,实验层设计
所需工具及技术
Nginx(Web服务器),ZookKeeper(分布式配置和集群管理工具),Lucene(全文检索引擎),Thrift(跨语言通信接口),Flume(数据高速公路),Hadoop、Spark(分布式数据处理平台),Redis(特征在线缓存),Flink、Storm(跨流计算平台)
做好以上准备后,再接着学经典推荐算法。更详细的讲解可以来看给大家争取来的推荐系统福利课程(5小时两节录播课+2小时会议面对面答疑)原价399,现在扫码领券9.9就能学!!

传统推荐算法模型
尽管深度学习推荐模型已经成了推荐、广告、搜索领域的主流,但传统推荐模型仍是基础,且在某些应用中仍使用广泛。
了解传统推荐算法模型

绕不开的倒排索引
学推荐算法要了解搜索算法,倒排索引是搜索引擎的核心技术之一,其核心目的是将从大量文档中查找包含某些词的文档集合这一任务用O(1)或O(logn)的时间复杂度完成。 学推荐算法需要简单了解一下。
你知道倒排索引的详细步骤吗?能用自己的话转述出来吗?转述也是掌握一个知识点的最好证明。
如果你连搜索引擎倒排索引也不知道的话,真的建议你来听一听我给大家争取的这个推荐系统福利课程(5小时两节录播课+2小时会议面对面答疑)原价399,现在扫码领券9.9就能学!!

基于邻域的推荐算法
UserCF算法
UserCF算法主要包括两个部分:
①找到和目标用户相似的用户集合
②找到这个集合中用户喜欢的,且目标用户没有听说过的物品推荐个目标用户。

UserCF算法改进
用户产生交集的物品较少怎么办?
答:时间复杂度:

ItemCF算法
对每个用户建立一个包含他喜欢的物品的列表。将他物品列表中的物品两两在共现矩阵C中加1。

UserCF算法和ItemCF算法的主要区别?

更详细的讲解,购买视频课后在第二节查看。不要错过我给大家争取的这个推荐系统福利课程(5小时两节录播课+2小时会议面对面答疑)原价399,现在扫码领券9.9就能学!!

经典模型讲解
隐语义模型

基于兴趣分类的方法大概需要解决3个问题。
如何给物品进行分类?
如何确定用户对哪些类的物品感兴趣,以及感兴趣的程度?
对于一个给定的类,选择哪些属于这个类的物品推荐给用户,以及如何确定这些物品在一个类中的权重?
采样原则
对每个用户,要保证正负样本的平衡(数目相似)。
对每个用户采样负样本时,要选取那些很热门,而用户却没有行为的物品
基于图的推荐模型
PersonalRank

模型学习的详细内容以及讲解,大家来看我争取的这个推荐系统福利课程(5小时两节录播课+2小时会议面对面答疑)原价399,现在扫码领券9.9就能学!!

推荐算法学习路径说好的给你们

本文深入探讨了推荐系统的理论知识、经典算法及其实际应用,包括电商、信息流场景中的个性化推荐。强调了推荐系统在资源有限的情况下,如何通过多轮排序优化效率。介绍了推荐系统的技术架构,涉及模型部署、更新、评估和实验设计。同时提到了传统推荐算法如UserCF和ItemCF,并推荐了一个原价399现价9.9的推荐系统课程,包含详细的内容讲解和答疑环节。
102

被折叠的 条评论
为什么被折叠?



