Python实战开发及案例分析(19)—— 推荐算法

        推荐系统是一种信息过滤系统,它的目标是预测用户对物品的偏好程度。在Python中,我们可以使用多种技术来实现推荐算法,包括基于内容的推荐、协同过滤推荐以及利用机器学习模型的混合推荐系统。

基本类型的推荐系统

  1. 基于内容的推荐系统:这种推荐系统基于对用户以前喜欢的物品的内容分析,推荐相似内容的物品。
  2. 协同过滤推荐系统:最常见的推荐算法类型,可以细分为用户基和物品基协同过滤。
    • 用户基协同过滤:找到相似的用户,并基于他们的喜好推荐物品。
    • 物品基协同过滤:推荐那些与用户历史上喜欢的物品相似的物品。

实现一个简单的物品基协同过滤推荐系统

        我们将使用scikit-learncosine_similarity来计算物品之间的相似性,并根据这些相似性得分进行推荐。

准备数据

        这里我们使用一个简单的电影评分数据集来演示。

import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity

# 假设我们有以下数据:用户对电影的评分
data = {
    'User': ['Alice', 'Bob', 'Cindy', 'Dan', 'Eva'],
    'Matrix': [5, 3, None, 1, None],
    'Titanic': [1, 2, 5, 2, 5],
    'Die Hard': [None, 5, 1, 5, None],
    'Forrest Gump': [2, 4, 2, None, 3],
    'Wall-E': [None, None, None, 5, 4]
}

df = pd.DataFrame(data).set_index('User')
df.fillna(0, inplace=True)  # 用0填充缺失值
计算物品之间的相似性
# 计算物品之间的余弦相似度
item_similarity = cosine_similarity(df.T)
similarity_df = pd.DataFrame(item_similarity, index=df.columns, columns=df.columns)

print("Item Similarity Matrix:")
print(similarity_df)
生成推荐
def recommend_movies(similarity, movie_name, user_rating):
    scores = similarity[movie_name] * (user_rating - 2.5)  # 将评分调整,考虑用户评分
    scores = scores.sort_values(ascending=False)
    return scores

print("Recommendations for Alice if she rated 'Titanic' 5 stars:")
print(recommend_movies(similarity_df, 'Titanic', 5))

案例分析:电影推荐系统

        假设Alice给出了对电影《Titanic》的高分,我们可以基于物品相似性为她推荐其他电影。

输出解释

        此代码计算了电影之间的余弦相似度,并基于Alice对《Titanic》的评分来推荐其他电影。这里,推荐的电影是基于与《Titanic》相似度最高的电影。

扩展功能

        推荐系统可以通过多种方式进行扩展和改进:

  1. 深入学习方法
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾贾乾杯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值