欢迎使用衡石分析平台 | HENGSHI SENSE
衡石分析平台是为数据驱动型组织量身打造的敏捷、实时、协作的大数据可视化分析平台,在敏捷型的商业智能工具基础上加入了高级分析,分享协作和应用发布等先进特性,帮助业务分析人员灵活高效的进行数据探索,并让数据成果在组织内部一键可达
- 适配各种主流数据平台,包括各种数据库/数据仓库,Hadoop Based 数据平台,NoSQL/NewSQL 数据库,搜索型数据源,云数据源,文件以及 SaaS API
- 基于 Apache Spark 的查询调度引擎,轻松关联查询异构数据源,有效应付快速增长的数据集
- 基于 H5的数据可视化支持,支持跨屏显示
- 提供基于 R/Python 的机器学习建模等高级分析手段
- 提供协作和发布分享机制,支持 LDAP 和 OAuth
- 丰富的二次开发接口,帮助合作伙伴快速构建数据类应用
总体产品介绍
以下概括阐述了产品基本理念,这些理念贯穿我们的整个产品开发和设计,并最终体现为产品的功能形态。我们希望衡石分析平台可以成为各个领域的行业人员进行业务分析的称手兵器,简单稳定,容易上手
业务的封装 - 应用|App
在2.0版本中,我们将仪表盘 | Dashboard和数据集 | Dataset都封装进了应用 | App里,让用户在探索的过程中可以更专注于当前的业务场景,充分利用数据集和仪表盘提供的功能。
触手可及 - 仪表盘|Dashboard
我们将仪表盘|Dashboard作为数据分析的成果展览室,仪表盘是非常适合分享和快照的对象,它直接体现了某项业务当前的全貌。每个仪表盘应该有明确的主题,它必定表现为某项业务的多角度的全面表现
仪表盘提供画布 Canvas 的调整功能,可以自由拖拽进行布局。构成仪表盘的各个探索图表来自某个数据集,对数据的探索以可视化的方式进行,最终的探索成果是一个或者多个统计性质的图表,这些图表能够方便的嵌入仪表盘,也可以直接分享给同事。另外,由于数据通过直连进行可视化展现,我们可以随时更新最新的数据现状,实时的呈现当前的业务状态
在衡石的开发团队里,大量采用了各种自动化的协助工具,最终最方便直接的工具逐渐得到了多数人的拥护,并通过频繁的使用成为日常工作流程的一部分。我们总是倾向于完成容易完成的工作,如果一个工具能够反复得到使用,那么使用的体验应该是没有压力,并令人感到友好的。我们尽量围绕很少的关键概念(如数据集,仪表盘,图表)进行功能扩充,小心消除使用中的步骤和路径,让大多数的使用体验都能轻松的在一两个步骤内完成,当用户的需求可以触手可及时,工作中因为工具带来的焦虑就能够显著降低,这让用户更加专注于业务问题
数据即业务 - 数据集|Dataset
我们把所有关于数据的连接管理,质量提升放在数据集 | Dataset这个功能里面。为了尽量减少数据反复移动,让数据停留在最适合存储的介质中,衡石分析平台通过建立最广泛的适配性,去连接各种数据源,并在分析过程中尽量复用每一种数据源最擅长的数据处理手段
对于某个数据源中的一个数据表(也可能是一个文件,或者一个 JSON 数据结构)都无差别的表现为衡石分析平台中的一个数据集,我们以此为基础,展开针对数据的管理和探索工作。
衡石分析平台不显式区分用户是技术部门还是业务部门,事实上我们欢迎一个组织内各个角色的人共同使用。数据早已不再是系统运行的单调日志记录,而是业务的载体和快照,某种意义上讲,数据就是业务。对于数据的理解和探索,就是对业务本身的梳理和洞察,我们希望技术部门和业务部门的人员能够围绕这个工具进行默契配合,敏捷迭代的规范数据接口,简化业务明晰的流程,去除冗余中间环节,回归数据的业务属性
即时呈现,即时同步,即时沟通 - 协作和分享|Collaboration
我们把协作和分享的功能作为一种基础能力散布在这个平台里的关键对象上,例如一个探索的图表,或者一个仪表盘,又或者一个数据集,但是协作和分享的场景略有区别
当用户使用分享的功能时,更多是希望将数据分析的作品发布出去,由于衡石分析平台基于 WEB 的特性构建,这让分享出去的成果天然保持了可以交互的优点,也可以适配信息抵达的不同设备
用户的协作是更加对等的,多个用户可以共同拥有一个数据集或者仪表盘的编辑主导权,按照不同的视角进行探索并共享分析的结果,这避免了一个工作项目在相关的同事之间来回传递的损耗
我们在产品中加入了发布评论,链接分享和协作邀请等要素,都是为了让组织内部当前关注数据业务的多个成员在独立工作的同时,还可以无障碍的即时沟通,让业务分析的接收方能够即刻回复意见和反馈,让数据分析的可视化结果在组织内部一键可达。事实上在这些高频操作上的效率优化,将显著提升一个组织内部的信息流转效率,用户围绕这个平台协作得越久,这个组织的数据效能就会越高,达到一个良性的循环,最终催生形成一个数据驱动型的团队
数据科学|Scientist
我们提供数据科学的功能让统计专家在大数据的尺度上运用合适语言进行建模统计和机器学习。通过类似 iPython 的 Notebook 技术,让专业用户方便的切换代码编写状态和结果查看状态。特别的,我们支持流行的 Python 和 R 语言进行数据工作,并且轻松依赖大数据的能力架构将常用的模型算法分布式执行,获得比传统统计建模更卓越的数据处理性能
我们尽量让产品的整体使用门槛降到最低,但还是为专业人员保留了一个可以尽情发挥能力的空间。这样的设计一方面满足大多人的常用需求,让更多的人围绕这个工具进行协作,另一方面提供足够的产品使用深度,大数据基础设施的能力需要这样的开口才能充分释放
更多相关信息
如果企业用户希望了解更多,可以访问我们的官网并申请试用。https://www.hengshi.com