最大概率分词中,认为每个词的概率都是独立的,但是有一部分词,其切分却与前一个词密切相关,特别是中文分词中更为明显,英文中就是如上一篇文章中的“tositdown”的例子。
这样就可以使用2元模型,就是如一个分割形式"ab cde f"的概率,
如果按照1-gram计算:P(ab cde f) = P(ab)*P(cde)*P(f)
如果按照2-gram计算:P(ab cde f) = P(ab|<s>)*P(cde|ab)P(f|cde)
基本的方法和最大概率分词差不多,就是计算片段概率的时候,需要知道选择的前驱节点的前驱节点位置,这样才能计算转移概率。具体如下图所示:
确定当前节点4的状态,就是根据几个概率累计值,取最大的,即可确定前驱节点和当前节点的累积概率
上代码(Python):
- #!/usr/bin/env python
- #coding=utf-8
- #############################################################
- #function: max probility segment
- # a dynamic programming method
- #
- #input: dict file
- #output: segmented words, divide by delimiter "\ "
- #author: wangliang.f@gmail.com
- ##############################################################
- import sys
- import math
- #global parameter
- DELIMITER = " " #分词之后的分隔符
- class DNASegment:
- def __init__(self):
- self.word1_dict = {} #记录概率,1-gram
- self.word1_dict_count = {} #记录词频,1-gram
- self.word1_dict_count["<S>"] = 8310575403 #开始的<S>的个数
- self.word2_dict = {} #记录概率,2-gram
- self.word2_dict_count = {} #记录词频,2-gram
- self.gmax_word_length = 0
- self.all_freq = 0 #所有词的词频总和,1-gram的
- #估算未出现的词的概率,根据beautiful data里面的方法估算
- def get_unkonw_word_prob(self, word):
- return math.log(10./(self.all_freq*10**len(word)))
- #获得片段的概率
- def get_word_prob(self, word):
- if self.word1_dict.has_key(word): #如果字典包含这个词
- prob = self.word1_dict[word]
- else:
- prob = self.get_unkonw_word_prob(word)
- return prob
- #获得两个词的转移概率
- def get_word_trans_prob(self, first_word, second_word):
- trans_word = first_word + " " + second_word
- #print trans_word
- if self.word2_dict_count.has_key(trans_word):
- trans_prob = \
- math.log(self.word2_dict_count[trans_word]/self.word1_dict_count[first_word])
- else:
- trans_prob = self.get_word_prob(second_word)
- return trans_prob
- #寻找node的最佳前驱节点
- #方法为寻找所有可能的前驱片段
- def get_best_pre_node(self, sequence, node, node_state_list):
- #如果node比最大词长小,取的片段长度以node的长度为限
- max_seg_length = min([node, self.gmax_word_length])
- pre_node_list = [] #前驱节点列表
- #获得所有的前驱片段,并记录累加概率
- for segment_length in range(1,max_seg_length+1):
- pre_node = segment_start_node #取该片段,则记录对应的前驱节点
- if pre_node == 0:
- #如果前驱片段开始节点是序列的开始节点,
- #则概率为<S>转移到当前词的概率
- #segment_prob = self.get_word_prob(segment)
- segment_prob = \
- self.get_word_trans_prob("<S>", segment)
- else: #如果不是序列开始节点,按照二元概率计算
- #获得前驱片段的前一个词
- pre_pre_node = node_state_list[pre_node]["pre_node"]
- pre_pre_word = sequence[pre_pre_node:pre_node]
- segment_prob = \
- self.get_word_trans_prob(pre_pre_word, segment)
- #当前node一个候选的累加概率值
- candidate_prob_sum = pre_node_prob_sum + segment_prob
- pre_node_list.append((pre_node, candidate_prob_sum))
- #找到最大的候选概率值
- (best_pre_node, best_prob_sum) = \
- max(pre_node_list,key=lambda d:d[1])
- return (best_pre_node, best_prob_sum)
- #最大概率分词
- def mp_seg(self, sequence):
- sequence = sequence.strip()
- #初始化
- node_state_list = [] #记录节点的最佳前驱,index就是位置信息
- #初始节点,也就是0节点信息
- ini_state = {}
- ini_state["pre_node"] = -1 #前一个节点
- ini_state["prob_sum"] = 0 #当前的概率总和
- node_state_list.append( ini_state )
- #字符串概率为2元概率
- #P(a b c) = P(a|<S>)P(b|a)P(c|b)
- #逐个节点寻找最佳前驱节点
- for node in range(1,len(sequence) + 1):
- #寻找最佳前驱,并记录当前最大的概率累加值
- (best_pre_node, best_prob_sum) = \
- self.get_best_pre_node(sequence, node, node_state_list)
- #添加到队列
- cur_node = {}
- cur_node["pre_node"] = best_pre_node
- cur_node["prob_sum"] = best_prob_sum
- node_state_list.append(cur_node)
- #print "cur node list",node_state_list
- # step 2, 获得最优路径,从后到前
- best_path = []
- node = len(sequence) #最后一个点
- best_path.append(node)
- while True:
- pre_node = node_state_list[node]["pre_node"]
- if pre_node == -1:
- break
- node = pre_node
- best_path.append(node)
- best_path.reverse()
- # step 3, 构建切分
- word_list = []
- for i in range(len(best_path)-1):
- left = best_path[i]
- word_list.append(word)
- seg_sequence = DELIMITER.join(word_list)
- return seg_sequence
- #加载词典,为词\t词频的格式
- def initial_dict(self, gram1_file, gram2_file):
- #读取1_gram文件
- dict_file = open(gram1_file, "r")
- for line in dict_file:
- sequence = line.strip()
- key = sequence.split('\t')[0]
- value = float(sequence.split('\t')[1])
- self.word1_dict_count[key] = value
- #计算频率
- self.all_freq = sum(self.word1_dict_count.itervalues()) #所有词的词频
- self.gmax_word_length = 20
- self.all_freq = 1024908267229.0
- #计算1gram词的概率
- for key in self.word1_dict_count:
- self.word1_dict[key] = math.log(self.word1_dict_count[key]/self.all_freq)
- #读取2_gram_file,同时计算转移概率
- dict_file = open(gram2_file, "r")
- for line in dict_file:
- sequence = line.strip()
- key = sequence.split('\t')[0]
- value = float(sequence.split('\t')[1])
- first_word = key.split(" ")[0]
- second_word = key.split(" ")[1]
- self.word2_dict_count[key] = float(value)
- if self.word1_dict_count.has_key(first_word):
- self.word2_dict[key] = \
- math.log(value/self.word1_dict_count[first_word]) #取自然对数
- else:
- self.word2_dict[key] = self.word1_dict[second_word]
- #test
- if __name__=='__main__':
- myseg = DNASegment()
- myseg.initial_dict("count_1w.txt","count_2w.txt")
- sequence = "itisatest"
- seg_sequence = myseg.mp_seg(sequence)
- print "original sequence: " + sequence
- print "segment result: " + seg_sequence
- sequence = "tositdown"
- seg_sequence = myseg.mp_seg(sequence)
- print "original sequence: " + sequence
- print "segment result: " + seg_sequence
可以看到
这样,itistst,仍然可以分成 it is a test
而前面分错的tositedown,则正确的分为to sit down
代码和字典见附件:http://pan.baidu.com/s/1bnw197L
但这样的分词显然还有一些问题,就是一个词是由前一个或者几个词决定的,这样可以去除一部分歧义问题,但是ngram模型还是基于马尔科夫模型的,其基本原理就是无后效性,就是后续的节点的状态不影响前面的状态,就是先前的分词形式一旦确定,无论后续跟的是什么词,都不会再有变化,这在现实中显然是不成立的。因此就有一些可以考虑到后续词的算法,如crf等方法,局可以参考相应的资料,这些算法,用几十行python代码一般很难写出来,因此,一般会使用具体的代码包来做。如crf++,http://crfpp.googlecode.com/svn/trunk/doc/index.html
等