爱吃莴苣笋
码龄13年
关注
提问 私信
  • 博客:50,023
    50,023
    总访问量
  • 36
    原创
  • 2,254,763
    排名
  • 7
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2011-12-23
博客简介:

二货胖纸的博客

查看详细资料
个人成就
  • 获得8次点赞
  • 内容获得2次评论
  • 获得48次收藏
创作历程
  • 37篇
    2017年
成就勋章
TA的专栏
  • 数据分析
    9篇
  • 系统分析
  • 机器学习
    16篇
  • 监督学习
    7篇
  • 深度学习
    3篇
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

循环神经网络训练时几个参数注意点的笔记

1、词嵌入维度参数(embedding_size)    词嵌入维度刻画了模型表达词汇的能力,对于翻译任务,一般需与数据集的词汇量大小保持一致。在词嵌入维度较小的时候,词汇容易被映射到相近的区域,互相之间缺乏有效区分,进而降低翻译质量。2、迭代次数参数(epoch)     迭代次数的选择主要是需要使神经网络的训练损失值接近或达到最小。一般选择的情况:当给出更多训练次数,神经网
原创
发布博客 2017.12.14 ·
4645 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

卷积神经网络笔记

一、卷积神经网络基础        · 卷积神经网络(Convolutional Neural Network,简称CNN):在识别图片上面有着很好的应用。       · CNN是一种空间上共享参数的神经网络,它通过正向和反向传播,自己学习识别物体。它可能有几层网络构成,第一层是抽象层次的最底层,CNN一般把图片中的较小的部分识别成简单的形状,下一层将会上升到更高的抽象层次,一般会识别更
原创
发布博客 2017.11.10 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

sigmoid公式的求导过程

原创
发布博客 2017.09.28 ·
1533 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

关于矩阵乘法的重要提醒

关于矩阵乘法的重要提醒左侧矩阵的列数必须等于右侧矩阵的行数。答案矩阵始终与左侧矩阵有相同的行数,与右侧矩阵有相同的列数。顺序很重要:乘法A•B不等于乘法B•A。左侧矩阵中的数据应排列为行,而右侧矩阵中的数据应排列为列。
转载
发布博客 2017.09.26 ·
527 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习总结 选择一个合适的算法

算法的分类收集的一个很实用的思维导图SKlearn的算法地图具体地址:http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
原创
发布博客 2017.09.04 ·
418 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

监督学习五 集成学习

1、集成学习(Ensemble Learning)     (这段内容摘自百度百科)     ※定义:集成学习是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法。     ※思路:在对新的实例进行分类的时候,把若干个单个分类器集成起来,通过对多个分类器的分类结果进行某种组合来决定最终的分类,以取得比单个分类器更好的性能。
原创
发布博客 2017.08.29 ·
1745 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

监督学习四 基于实例的学习

1、基于实例的学习(instance-based learning)      这应该是机器学习算法中最简单的算法,它不像其他算法需要在样本的基础上建立一般性的推理公式,而是直接通过存储的数据集进行分类或回归学习来得到结果。     它的缺点是对存储空间的需求很大,需要占用的空间直接取决于实例数量的大小,并且预测的时候需要与已知的实例进行比对,运行时间会相对慢。2、饥饿式学习
原创
发布博客 2017.08.25 ·
7019 阅读 ·
0 点赞 ·
0 评论 ·
16 收藏

神经网络 梯度下降算法/delta规则

1、梯度下降算法定义(gradient descent)(摘自百度百科)      梯度下降算法是一种最优化算法,通常用于非线性可分的数据集。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。2、梯度下降算法的核心是微积分,通过迭代以下步骤来获取局部最小值,主要求解过程如下:3、深入梯度下降的讲解,我觉得这篇讲得非常详细,
原创
发布博客 2017.08.24 ·
1661 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

神经网络 感知器训练算法

感知器训练(perceptron)对象: 单个单元(perceptron unit)用途: 处理线性可分的数据集公式:目的: 设置权值以便获得与预期相同的数据集方式:通过不断地修改权值来实现目的,这里采用给权值W赋予学习速率的方式,但碰到一个问题是原先的实际输出值是跟阈值θ做比较的,这个算法没有办法对θ赋予学习规则,所以需要学习θ,这里引入一个简单的实际学习技巧,把θ视为另一种
原创
发布博客 2017.08.11 ·
925 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

监督学习三 神经网络

神经网络是受人类大脑的启发而构建的一种模型,它们在很多方面弥补了机器学习和认知科学之间的空白。1、人工神经网络     人工神经网络是模仿人类大脑的神经网络而构建的一种模型,感知器是神经网络组成单元,也叫神经元。    神经元的组成部分:            · 输入层:X1、X2、X3等,输入数据;            · 权重 :w1、w2、w3等,
原创
发布博客 2017.08.10 ·
603 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

监督学习二 回归和分类

回归和分类是对数据集建模的两种方法,具体使用哪种取决于数据类型属于数值数据还是分类数据。1、回归的定义(Regression)      研究一组随机变量(Y1 ,Y2 ,…,Yi)和另一组(X1,X2,…,Xk)变量之间关系的统计分析方法,又称多重回归分析。通常前者是因变量,后者是自变量。      线性回归:y=mx+b,其中m是斜率(Slope),b是截距(interce
原创
发布博客 2017.08.08 ·
709 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

监督学习一 决策树

1、定义:决策树是一种决策结构,其中每个决策都会产生一系列结果以及其他决策;决策树也是一种分类算法,预测模型。在已知各种情况发生概率的情况下,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。2、分类与回归之间的区别       分类:从某种输入映射到某些概念,针对离散型数据,例如性别等。       
原创
发布博客 2017.08.07 ·
583 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习基础 总结笔记

1、sklearn:机器学习的一个包,能够自动在数据中寻找模式并对数据集进行分割
原创
发布博客 2017.08.07 ·
589 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习十三 STD(标准差)在Numpy与Pandas中的不同

在Numpy与Pandas中的标准差求法的不同在于ddof的不同。ddof:贝塞尔(无偏估计)矫正系数。在Pandas中的处理:DataFrame.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)→它求的是样本无偏方差在Numpy中的处理:numpy.
原创
发布博客 2017.08.04 ·
1932 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习十二 误差原因与模型复杂度

误差原因(Error):用于测量模型性能的基本指标。在模型预测中,模型可能出现的误差来自两个主要来源,即:因模型无法表示基本数据的复杂度而造成的偏差(bias),或者因模型对训练它所用的有限数据过度敏感而造成的方差(variance)。偏差:准确率和欠拟合如果模型具有足够的数据,但因不够复杂而无法捕捉基本关系,则会出现偏差。这样一来,模型一直会系统地错误表示数据,从而导致准
原创
发布博客 2017.08.01 ·
5575 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

机器学习十一 评估指标

评估指标(Evaluation Metrics)1、选择合适的指标在构建机器学习模型的时候,首先要选择性能指标,然后测试模型的表现如何。相关的指标有多个,具体取决于我们要解决的问题。在可以选择性能指标之前,首先要认识到机器学习研究的是如何学习根据数据进行预测。在测试模型时,也务必要将数据集分解为训练数据和测试数据。如果不区分训练数据集和测试数据集,则在评估模
原创
发布博客 2017.08.01 ·
467 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习十 交叉验证

交叉验证(Cross Validation)定义(摘自百度百科):交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标。目的:为了获
原创
发布博客 2017.07.31 ·
3173 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

机器学习九 python matplotlib

图形绘制(python matmatplotlib)
原创
发布博客 2017.07.31 ·
273 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习八 异常值

异常值(Outliers)定义:指样本中的个别值,其数值明显偏离它(或他们)所属样本的其余观测值,也称异常数据,离群值。产生异常值的因素:1、传感器故障所引起的
原创
发布博客 2017.07.29 ·
858 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习七 回归分析

回归(Regression)定义(摘自百度百科):回归分析是一种数学模型。当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一元线性回归,由大体上有线性关系的一个自变量和一个因变量组成;模型是Y=a+bX+ε(X是自变量,Y是因变量,ε是随机误差)。通常假定随机误差的均值为0,方差为σ^2(σ^2﹥0,σ^2与X的值无关)。//若进一步假定随机误差遵从正态分布,就叫做正态线性
原创
发布博客 2017.07.28 ·
431 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多