0、散点图(scatter diagram)
通常应用于回归分析。散点图中的包含的数据越多,展示的效果更好。
1、朴素贝叶斯方法(Naive bayes)
这是一种基于贝叶斯定理与特征条件独立假设的分类方法。
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(features_train,labels_train)
pred = clf.predict(features_test)
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(pred,labels_test)
全概率:概率论中的重要公式。
P(A)=P(AB1)+P(AB

本文介绍了机器学习中的两种重要算法:朴素贝叶斯和SVM。朴素贝叶斯方法基于贝叶斯定理和特征条件独立假设进行分类,公式为P( Category | Document) = P ( Document | Category ) * P( Category) / P(Document)。而支持向量机(SVM)则是一种利用数据点与分割线距离进行分类的算法,特别适合处理数据噪声较大的情况。
最低0.47元/天 解锁文章

3514

被折叠的 条评论
为什么被折叠?



