机器学习五 朴素贝叶斯与SVM

本文介绍了机器学习中的两种重要算法:朴素贝叶斯和SVM。朴素贝叶斯方法基于贝叶斯定理和特征条件独立假设进行分类,公式为P( Category | Document) = P ( Document | Category ) * P( Category) / P(Document)。而支持向量机(SVM)则是一种利用数据点与分割线距离进行分类的算法,特别适合处理数据噪声较大的情况。
摘要由CSDN通过智能技术生成

0、散点图(scatter diagram)

     通常应用于回归分析。散点图中的包含的数据越多,展示的效果更好。


1、朴素贝叶斯方法(Naive bayes)

      这是一种基于贝叶斯定理与特征条件独立假设的分类方法。

    from sklearn.naive_bayes import GaussianNB
    clf = GaussianNB()
    clf.fit(features_train,labels_train)
    pred = clf.predict(features_test)
    from sklearn.metrics import accuracy_score
    accuracy = accuracy_score(pred,labels_test)

        全概率:概率论中的重要公式。

                        P(A)=P(AB1)+P(AB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值