区间dp nyoj737 合并石头(一)

区间dp讲解,感谢作者:http://www.cnblogs.com/qq-star/p/4161143.html

题目连接:http://acm.nyist.net/JudgeOnline/problem.php?pid=737

                                                             石子合并(一)

                                                                                  时间限制: 1000 ms  |  内存限制: 65535 KB
                                                                                                         难度: 3
             描述
    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239

解题:

//给每个石头编号 1~n
    //dp[i][j]表示合并第i个石头到第n个石头消耗的最小体力
    
    //还可以这么说,dp[i][j]也就表示不同的分法,而dp[i][j]是合并第i~j个石头分法中最优的
    //比如dp[1][3]意味着合并编号1~3的石头,有两种不同的分法dp[1][1]+dp[2][3]或者是dp[1][2]+dp[3][3]
    //两者取其中消耗体力最小的方案
    //那么在下次dp[1][4]就需要用到dp[1][3]了
    //因为dp[1][4]可以有这么些方案,dp[1][1]+dp[2][4]或者dp[1][2]+dp[3][4]或者dp[1][3]+dp[4][4]
    //而此时dp[1][3]我们已经求出来了,其实dp[1][1],dp[2][4]......
    //这些小区间我们在上一层循环或上上层循环与dp[1][3]用上面举例的方式都已经求出来了,看下面的代码会更清楚。
    //思路就是无论是一个多大个区间,都可以分为两个小区间进行合并
    //将大区间合并规划缩小成之前已经求出来的小区间合并

#include<stdio.h>
#define MAX 2100000000
int main()
{
	int dp[210][210]; //dp[i][j]也就表示不同的分法,dp[i][j]是i~j分法中最优的 
	int st[210];//石头的重量
	int sum[210][210];  //不同范围的石头总量 
	int i,j,k;
	int n;
	while(~scanf("%d",&n))
	{
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
			{
				dp[i][j]=MAX;//初始化,因为题目求最小,所以把每种方案都设置为'无限大' 
			}
		}
		for(i=1;i<=n;i++)
		{
			scanf("%d",&st[i]);
			sum[i][i]=st[i];//赋值,每种石头的重量 
			dp[i][i]=0;//只有一个石头,不用合并,赋值0 
		}
		int len;
		for(len=1;len<n;len++)//设置步长,要合并的长度 
		{
			for(i=1;i<=n&&(i+len)<=n;i++)//起点,每次从1开始	
			{
				j=i+len;//合并的终点 
				for(k=i;k<j;k++)//k是活动的,是一个分割点,i~j之间分割成两个部分 
				{
					sum[i][j]=sum[i][k]+sum[k+1][j]; //求出i~j之间石头的总质量 
					if(dp[i][j]>dp[i][k]+dp[k+1][j]+sum[i][j])//找消耗最小的方案 
					{
						dp[i][j]=dp[i][k]+dp[k+1][j]+sum[i][j];
					}
				}
			}
		} 
		printf("%d\n",dp[1][n]);
	} 
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值