区间dp讲解,感谢作者:http://www.cnblogs.com/qq-star/p/4161143.html
题目连接:http://acm.nyist.net/JudgeOnline/problem.php?pid=737
石子合并(一)
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
-
输入
-
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
- 输出总代价的最小值,占单独的一行 样例输入
-
3 1 2 3 7 13 7 8 16 21 4 18
样例输出
-
9 239
-
有多组测试数据,输入到文件结束。
解题:
//给每个石头编号 1~n
//dp[i][j]表示合并第i个石头到第n个石头消耗的最小体力
//还可以这么说,dp[i][j]也就表示不同的分法,而dp[i][j]是合并第i~j个石头分法中最优的
//比如dp[1][3]意味着合并编号1~3的石头,有两种不同的分法dp[1][1]+dp[2][3]或者是dp[1][2]+dp[3][3]
//两者取其中消耗体力最小的方案
//那么在下次dp[1][4]就需要用到dp[1][3]了
//因为dp[1][4]可以有这么些方案,dp[1][1]+dp[2][4]或者dp[1][2]+dp[3][4]或者dp[1][3]+dp[4][4]
//而此时dp[1][3]我们已经求出来了,其实dp[1][1],dp[2][4]......
//这些小区间我们在上一层循环或上上层循环与dp[1][3]用上面举例的方式都已经求出来了,看下面的代码会更清楚。
//思路就是无论是一个多大个区间,都可以分为两个小区间进行合并
//将大区间合并规划缩小成之前已经求出来的小区间合并
#include<stdio.h>
#define MAX 2100000000
int main()
{
int dp[210][210]; //dp[i][j]也就表示不同的分法,dp[i][j]是i~j分法中最优的
int st[210];//石头的重量
int sum[210][210]; //不同范围的石头总量
int i,j,k;
int n;
while(~scanf("%d",&n))
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
dp[i][j]=MAX;//初始化,因为题目求最小,所以把每种方案都设置为'无限大'
}
}
for(i=1;i<=n;i++)
{
scanf("%d",&st[i]);
sum[i][i]=st[i];//赋值,每种石头的重量
dp[i][i]=0;//只有一个石头,不用合并,赋值0
}
int len;
for(len=1;len<n;len++)//设置步长,要合并的长度
{
for(i=1;i<=n&&(i+len)<=n;i++)//起点,每次从1开始
{
j=i+len;//合并的终点
for(k=i;k<j;k++)//k是活动的,是一个分割点,i~j之间分割成两个部分
{
sum[i][j]=sum[i][k]+sum[k+1][j]; //求出i~j之间石头的总质量
if(dp[i][j]>dp[i][k]+dp[k+1][j]+sum[i][j])//找消耗最小的方案
{
dp[i][j]=dp[i][k]+dp[k+1][j]+sum[i][j];
}
}
}
}
printf("%d\n",dp[1][n]);
}
return 0;
}