有 N 堆石头排成一排,第 i 堆中有 stones[i] 块石头。
每次移动(move)需要将连续的 K 堆石头合并为一堆,而这个移动的成本为这 K 堆石头的总数。
找出把所有石头合并成一堆的最低成本。如果不可能,返回 -1 。
示例 1:
输入:stones = [3,2,4,1], K = 2
输出:20
解释:
从 [3, 2, 4, 1] 开始。
合并 [3, 2],成本为 5,剩下 [5, 4, 1]。
合并 [4, 1],成本为 5,剩下 [5, 5]。
合并 [5, 5],成本为 10,剩下 [10]。
总成本 20,这是可能的最小值。
示例 2:
输入:stones = [3,2,4,1], K = 3
输出:-1
解释:任何合并操作后,都会剩下 2 堆,我们无法再进行合并。所以这项任务是不可能完成的。.
示例 3:
输入:stones = [3,5,1,2,6], K = 3
输出:25
解释:
从 [3, 5, 1, 2, 6] 开始。
合并 [5, 1, 2],成本为 8,剩下 [3, 8, 6]。
合并 [3, 8, 6],成本为 17,剩下 [17]。
总成本 25,这是可能的最小值。
提示:
1 <= stones.length <= 30
2 <= K <= 30
1 <= stones[i] <= 100
借鉴别人的思路:
//借鉴别人的
int mergeStones(vector<int>& stones, int K) {
int len = stones.size();
if (len < 2)
return 0;
if (K > len || (len - K) % (K - 1) !=0 ) // 最后一次如果能够合并,则至少剩余k个,其余每次合并都会减少K-1的堆
return -1;
int totalCost = 0;
vector<int>sum; // 顺序合并时,每合并一个石堆,花费的成本数
int vec[32][32][32]; // 记录从i到j的最低成本
memset(vec, 0x3f, sizeof(vec));
for (int i = 0; i < len; i++)
{
totalCost += stones[i];
sum.push_back(totalCost);
vec[i][i][0] = 0;
}
//为什么不是K-2堆和2堆以及K-3堆和3堆是因为我们的子问题是合并成1堆,当前状态是由前一状态得到的。而我们最初只有dp[i][i][1]=0这个条件
// 由小递归到大
for (int space = 1; space < len; space++)
{
for (int left = 0; left < len - space; left++)
{
int right = left + space;
for (int mid = left; mid <= right; mid++)
{
for (int heap = 1; heap <= space; heap++)
{
vec[left][right][heap] = min(vec[left][right][heap], vec[left][mid][heap - 1] + vec[mid + 1][right][0]);
int value = vec[left][right][heap];
value++;
}
}
if(left != 0)
vec[left][right][0] = min(vec[left][right][0], vec[left][right][K - 1] + sum[right] - sum[left - 1]);
else
vec[left][right][0] = min(vec[left][right][0], vec[left][right][K - 1] + sum[right]);
}
}
return vec[0][len - 1][0];
}