原题: http://poj.org/problem?id=1609
题目大意: 有一些块,每个块有两个参数li mi, 如果有块1(l1,m1),块2(l2,m2),如果满足l1>=l2 && m1>=m2 块1就可以叠在块2上面,反块2能叠放在块1上面,问有n个块,最多能叠多少个块......先根据li从小到大排序,再按mi从小到大排序,对 mi 求最长不递减子序列
顺便复习了二分求 最长子序列。
二分求: 0ms
#include<cstdio>
#include<algorithm>
using namespace std;
struct W
{
int l;
int m;
}w[10100];
int cmp(W a,W b)
{
if(a.l!=b.l)
{
return a.l<b.l;
}else{
return a.m<b.m;
}
}
int main()
{
int n;
scanf("%d",&n);
while(n!=0)
{
int dp[10100]={0};//长度为Len的数字
for(int i=0;i<n;i++)
{
scanf("%d %d",&w[i].l,&w[i].m);
}
sort(w,w+n,cmp);//按l从小到大排序
dp[1]=w[0].m;
int rr=1;
for(int i=1;i<n;i++)
{
int l=1;
int r=rr;
//用二分
while(l<=r)
{
int mid=(l+r)/2;
if(dp[mid]>w[i].m)
{
r=mid-1;
}else{
l=mid+1;
}
}
if(l>rr)
{
rr=rr+1;
dp[rr]=w[i].m;
}else{
dp[l]=min(dp[l],w[i].m);
}
}
printf("%d\n",rr);
scanf("%d",&n);
}
printf("*\n");
return 0;
}
传统求:16ms
#include<cstdio>
#include<algorithm>
using namespace std;
struct W
{
int l;
int m;
}w[20100];
int cmp(W a,W b)
{
if(a.l!=b.l)
{
return a.l<b.l;
}else{
return a.m<b.m;
}
}
int max(int a,int b)
{
if(a>=b)return a;
return b;
}
int main()
{
int n;
scanf("%d",&n);
while(n!=0)
{
for(int i=0;i<n;i++)
{
scanf("%d %d",&w[i].l,&w[i].m);
}
sort(w,w+n,cmp);//按l从小到大排序
int dp[20100]={1};
int ans=1;
for(int i=1;i<n;i++)
{
int tmp=0;
for(int j=i-1;j>=0;j--)
{
if(w[i].m>=w[j].m)
{
tmp=max(tmp,dp[j]);
}
}
dp[i]=tmp+1;
ans=max(ans,dp[i]);
}
printf("%d\n",ans);
scanf("%d",&n);
}
printf("*\n");
return 0;
}