Leetcode 436 Find Right Interval
题目原文
Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.
Note:
- You may assume the interval's end point is always bigger than its start point.
- You may assume none of these intervals have the same start point.
Example 1:
Input: [ [1,2] ]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: [ [3,4], [2,3], [1,2] ]
Output: [-1, 0, 1]
Explanation: There is no satisfied "right" interval for [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point;
For [1,2], the interval [2,3] has minimum-"right" start point.
题意分析
给定一组intervals,它们都有起始时间和结束时间,对于每一个interval,返回比这个interval的end高的最小start对应的interval的下标,如果没有,则返回-1,将所有的返回值存在一个向量中。其中每个start都互不相同。
解法分析
本题采用贪心思想,先对所有interval的start进行从小到大的排序,并利用map关联start和他们初始的下标。检查每个interval在排序后的end刚好大于哪个interval的start,返回拥有这个start的下标。C++代码如下:
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
static bool compareStart(const Interval &a,const Interval &b){
return (a.start<b.start);
}
vector<int> findRightInterval(vector<Interval>& intervals) {
vector<int> wrong;
if(intervals.size()==0)
return wrong;
vector<int> res(intervals.size(),-1);
unordered_map<int,int> subs;
int i,j;
for(i=0;i<intervals.size();i++)
subs[intervals[i].start]=i;
sort(intervals.begin(),intervals.end(),compareStart);
for(i=0;i<intervals.size()-1;i++){
for(j=i+1;j<intervals.size();j++){
if(intervals[j].start>=intervals[i].end){
res[subs[intervals[i].start]]=subs[intervals[j].start];
break;
}
}
}
return res;
}
};
上述代码中内层for循环的复杂度为O(k),所以算法的复杂度为排序的复杂度O(nlogn)。上述操作还可以用map直接完成,利用map对key进行的排序,以及m.lower_bound(x)完成right interval的寻找。C++代码如下:
class Solution {
public:
vector<int> findRightInterval(vector<Interval>& intervals) {
map<int, int> hash;
vector<int> res;
int n = intervals.size();
for (int i = 0; i < n; ++i)
hash[intervals[i].start] = i;
for (auto in : intervals) {
auto itr = hash.lower_bound(in.end);
if (itr == hash.end()) res.push_back(-1);
else res.push_back(itr->second);
}
return res;
}
};
在构造hash容器时所有元素就按start由小到大排序完成,lower_bound(in.end)返回以大于等于in.end的最小start为关键字的元素的迭代器,如果没有这样的元素,返回尾迭代器。