[BZOJ 1009][HNOI2008]GT考试(KMP+线性齐次递推的矩阵加速?+DP)

2 篇文章 0 订阅
1 篇文章 0 订阅

Description


  阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2…Am(0<=Ai<=9)有M位,不出现是指X1X2…Xn中没有恰好一段等于A1A2…Am. A1和X1可以为
0

Input


  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output


  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input


4 3 100
111

Sample Output


81

Solution


不是说题目起得长一般会有人看么x

递推,由KMP得到next数组
f[i][j] :到第 i 的长度时,后缀与s的前缀相同的长度(最长)为 j

f[i][j]=next[k]=if[i1][k]

看到N的数据范围,于是可以想到矩阵,快速幂加速
感觉对构造矩阵不是很熟QvQ 这题再想想

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
int n,m,Mod;
int next[25];
char s[25];
struct Matrix{
    int p[25][25];
    Matrix(){memset(p,0,sizeof(p));}
}a;
Matrix operator * (const Matrix& A,const Matrix& B)
{
    Matrix C;
    for(int i=0;i<m;i++)
    for(int j=0;j<m;j++)
    for(int k=0;k<m;k++)
    {
        C.p[i][j]+=(A.p[i][k]*B.p[k][j])%Mod;
        C.p[i][j]%=Mod;
    }
    return C;
}
void getnext()
{
    int j=0;
    for(int i=2;i<=m;i++)
    {
        while(j&&s[j+1]!=s[i])j=next[j];
        if(s[j+1]==s[i])j++;
        next[i]=j;
    }
}
void work()
{
    int k;
    for(int i=0;i<m;i++)
    for(int j=0;j<=9;j++)
    {
        k=i; //前i位已经匹配 
        while(k&&s[k+1]-'0'!=j)k=next[k];
        if(s[k+1]-'0'==j)k++;
        //由i可以转移到k 
        a.p[k][i]++;
    }
}
Matrix Pow(Matrix A,int n)
{
    Matrix res;
    for(int i=0;i<m;i++)
    res.p[i][i]=1;
    while(n>0)
    {
        if(n&1)res=res*A;
        A=A*A;
        n>>=1;
    }
    return res;
}
int main()
{
    scanf("%d%d%d",&n,&m,&Mod);
    scanf("%s",s+1);
    getnext();
    work();
    a=Pow(a,n);
    int ans=0;
    for(int i=0;i<m;i++)
    ans+=a.p[i][0],ans%=Mod;
    printf("%d",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值