Deeplearning
文章平均质量分 70
zbazz
这个作者很懒,什么都没留下…
展开
-
deeplearning.ai 笔记 Specialization 1 week 2 Python and Vectorization
Vectorization什么是向量化?向量化是为了让模型的速度更快左边是非向量化的实现,右边是向量化的实现图中是使用for循环和向量化处理的时间对比,可以看出向量化后快了将近300倍。更多向量化的案例:More Vectorization Examples绿色笔记使得原来的两个for循环变成了一个,提高了速度。Vectorizing Logistic Regressionbroadcasting...原创 2018-04-10 16:54:30 · 254 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 5 week 1 序列模型
1. 序列模型能解决哪些问题如语音识别、生成音乐、情感分类(如将对电影的评价转换为星级)、DNA序列检测(是不是某种蛋白质)、机器翻译、视频动作识别、姓名识别等。2. 符号定义输入:x,第一个单词x<1>等等,输出:y 第i个结果:y<i>。Tx代表输入的长度(有几个词),x/y中的t是某个时间点的意思。要识别某个词,首先要有一个字典,然后将语句中的...原创 2018-07-30 21:15:50 · 232 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 2 week 3 超参数调试
1. tune process会调整的超参数:红、黄、紫为调整的可能从粗略到详细地调整,尝试随机2. 为超参数选择合适的范围一般不会使用线性轴,因为在首末对于熟知的变化敏感程度不一样,需要更多的去寻找。如果使用线性然后由粗到细的找最后也能找到合适的超参数3. 超参数设置实践:Panda V.S. Caviar(熊猫和鱼子酱),来代表两种不同实验超参数...原创 2018-07-19 16:49:34 · 177 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 3 week 2 机器学习策略
1. 误差分析误差分析:真的是把狗误标记成猫的样本多吗?可以画一张表手工验证,给后期调优具体方向2. 清除标注错误的数据训练集分类将小白狗分类为猫,这种随机的错误在数据量很大的时候可以不做修改,但是某些错误(比如把白色的狗都分类成猫)为系统错误,没有那么好的鲁棒性。建议:3. 建立好模型,然后迭代4. 在不同分布上的训练、测试假设实际使用的数...原创 2018-07-24 22:05:28 · 381 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 2 week 2 优化算法
本周将如何是的自己的算法更快1.mini-batch梯度下降同时处理的不再是整个X和Y,而是一部分X^{1}、Y^{1}...这样可以使梯度下降先处理一部分,加快训练速度。batch来源于整个训练集合训练完成梯度下降,mini-batch是分割数据集后进行多次梯度下降。epoch 代表完全遍历集合一次,batch只能做一次梯度下降,而mini-batch可以做多次(和分割的大小有关...原创 2018-07-18 21:27:07 · 192 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 3 week 1 结构化机器学习项目
1. 为什么是机器学习策略不用在错误的方向上浪费大量的时间。2. 正交化例子:老式TV的旋钮,每个旋钮只能调节一个画面属性(长宽比、矩形化、X轴位置、Y轴位置等),这样可以很方便的调节画面到正中,而如果调节一个旋钮同时改变两个属性(长宽和位置),虽然理论上是可以将画面调节到正中的,但是很难。3. 单一数字评估指标用查准率与查全率不能很好地全面反映,可以用F1分数...原创 2018-07-23 22:25:45 · 172 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 4 week 2 Convolutional Neural Networks Case Studies
1. 实例学习2.经典神经网络LeNet - 5AlexNetVGG-163. 残差网络(Residual Networks, ResNets)残差块:short cut/skip connection原来的传播是a->liner->ReLu->liner->ReLu->a[l+2]残差块做的事是把a直接约过几个层,传播到ReLu之前,让a[l+2]在ReLu计算时包...原创 2018-04-28 15:43:58 · 177 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 1 week 3
本周内容:浅层神经网络1. 神经网络概览:如图所示为一个简单的神经网络正向传播和反向传播的示意图,对于输入x,结合w and b得到z,进而得到a=sigmoid(z),再和w and b 得到z,得到a2(也是结果)。2. 神经网络的表示:神经网络分为三层:input/hidden/output layer为什么称为hidden layer:在训练集中无法“看到”输入层x也叫a[0](上标),a...原创 2018-04-20 14:40:45 · 170 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 1 week 1
学而不思则罔,思而不学则殆。第一个系列的课程主要介绍什么事神经网络和深度学习,介绍了系列课程的总体结构:What is a neural network?举例:房价预测假设知道六个房子的面积和价格,对房价进行预测,假设结果是一条直线,又知道房价不可能为负,所以函数与x轴交点之前的值均为0。这个函数是深度学习中常见的ReLU(线性整流函数 Rectified Linear Unit)。我们把房子的大...原创 2018-04-03 16:13:21 · 193 阅读 · 0 评论 -
deeplearning.ai 笔记 Specialization 4 week 3 目标检测
1. 目标定位从简单的检测有没有车到给车画上框,实际增加了四个参数bx,by,bh,bw,为框左上角的点和长宽:损失函数可以用八个值得平方差,也可以根据不同的选择不同的方式:c1到c3使用softmax并输出一个,边界坐标用平方误差,Pc用逻辑回归,等等2. 特征点检测汽车、人脸、动作的特征点3. 目标检测滑动窗口:缺点:对于卷积来说太慢了(已解决)...原创 2018-07-27 15:59:52 · 255 阅读 · 0 评论