deeplearning.ai 笔记 Specialization 2 week 3 超参数调试

1. tune process

会调整的超参数:红、黄、紫为调整的可能

从粗略到详细地调整,尝试随机

2. 为超参数选择合适的范围

一般不会使用线性轴,因为在首末对于熟知的变化敏感程度不一样,需要更多的去寻找。如果使用线性然后由粗到细的找最后也能找到合适的超参数

3. 超参数设置实践:

Panda V.S. Caviar(熊猫和鱼子酱),来代表两种不同实验超参数的方式,第一种每天都要悉心照料(通常计算资源不够),第二种同时跑很多种模型找最好的。

4.正则化网络的激活函数

为了更好的训练w and b:

5. 将Batch Norm 拟合到神经网络中

Batch Norm发生在红色线部分,在z输入激活函数变成a之前。

在tensorflow中一句话就可以实现:tf.nn.batch.normalization

Batch Norm 经常和mini batch一起使用:

由于使用了Batch,b不再需要(会被抵消,每次计算 z title 平均值再减去平均值)

6. 为什么 Batch Norm 有用

Covariate shift:

在黑猫的数据及上训练完成后,模型可能不能很好的处理其他有色猫。

而“对于神经网络的各层输出,在经过了层内操作后,各层输出分布就会与对应的输入信号分布不同,而且差异会随着网络深度增大而加大了,但每一层所指向的Label仍然是不变的”

BN还有轻微的正则化作用。

7. 测试时的Batch Normalization

8. Softmax 回归

进行多分类时

9. 训练softmax

hardmax:将1放在一个位置上,其他0

softmax:将每个概率放在相应位置上,和为1

当C=2是,softmax回归和逻辑回归一样,证明思路是给的两个概率其实有一个没有意义,变成了一个输出

借助变成框架可一直关心正向传播,框架会帮你计算导数、反向传播

10. 框架选择

11. Tensorflow

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值