deeplearning.ai 笔记 Specialization 2 week 3 超参数调试

1. tune process

会调整的超参数:红、黄、紫为调整的可能

从粗略到详细地调整,尝试随机

2. 为超参数选择合适的范围

一般不会使用线性轴,因为在首末对于熟知的变化敏感程度不一样,需要更多的去寻找。如果使用线性然后由粗到细的找最后也能找到合适的超参数

3. 超参数设置实践:

Panda V.S. Caviar(熊猫和鱼子酱),来代表两种不同实验超参数的方式,第一种每天都要悉心照料(通常计算资源不够),第二种同时跑很多种模型找最好的。

4.正则化网络的激活函数

为了更好的训练w and b:

5. 将Batch Norm 拟合到神经网络中

Batch Norm发生在红色线部分,在z输入激活函数变成a之前。

在tensorflow中一句话就可以实现:tf.nn.batch.normalization

Batch Norm 经常和mini batch一起使用:

由于使用了Batch,b不再需要(会被抵消,每次计算 z title 平均值再减去平均值)

6. 为什么 Batch Norm 有用

Covariate shift:

在黑猫的数据及上训练完成后,模型可能不能很好的处理其他有色猫。

而“对于神经网络的各层输出,在经过了层内操作后,各层输出分布就会与对应的输入信号分布不同,而且差异会随着网络深度增大而加大了,但每一层所指向的Label仍然是不变的”

BN还有轻微的正则化作用。

7. 测试时的Batch Normalization

8. Softmax 回归

进行多分类时

9. 训练softmax

hardmax:将1放在一个位置上,其他0

softmax:将每个概率放在相应位置上,和为1

当C=2是,softmax回归和逻辑回归一样,证明思路是给的两个概率其实有一个没有意义,变成了一个输出

借助变成框架可一直关心正向传播,框架会帮你计算导数、反向传播

10. 框架选择

11. Tensorflow

基于Python的天气预测与可视化(完整源码+说明文档+数据),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值