面向开发者的音频与语音能力总览:API选型、实时流式、语音合成与识别

概述

大型语言模型(LLM)在音频场景中可以将声音作为输入、输出或两者兼具。围绕这些能力,API通常提供两类能力:一类是构建语音智能体或交互式语音应用的通用接口,另一类是面向单一用途(语音识别、语音合成、翻译等)的专用接口。本文系统梳理音频与语音相关的能力、API选型方法、常见架构模式,并提供可直接运行的代码示例,帮助你在工程实践中落地语音智能体、实时转写与合成等功能。

典型场景

  • 语音智能体(Voice Agents):理解用户语音并以自然语言回应。可选两种实现路径:
  • 语音到语音(Speech-to-Speech):基于实时接口,延迟更低、互动更自然。
  • 组合式链路:语音识别(Speech-to-Text)→ 文本LLM推理 → 文本转语音(Text-to-Speech),扩展性更强、可控性更好。
  • 实时流式处理(Streaming Audio):通过实时API进行音频的双向流式交互,适合低延迟的智能体和转写场景。
  • 文本转语音(TTS):将文本即时合成为自然语音,可指定音色与语调。
  • 语音转文本(STT):将语音快速准确地转写为文字,支持多语言。

模型与能力概览

  • 文本转语音(TTS)模型:gpt-4o-mini-tts、tts-1、tts-1-hd
  • 支持在合成阶段定制说话方式与音色(例如 voice="alloy")。
  • 语音转文本(STT)模型:gpt-4o-transcribe、gpt-4o-mini-transcribe、whisper-1
  • 可结合流式传输持续输入音频并获得连续转写结果。
  • 多模态模型:如 GPT-4o 与 GPT-4o mini,原生支持文本与音频等多模态的理解与生成。

API选型指南

从输入输出模态及流式能力维度进行选择:

  • Realtime API:同时支持音频与文本的输入输出,支持音频的双向流式交互,适合低延迟语音智能体。
  • Chat Completions API:支持文本与音频输入输出,支持音频的流式输出,适合需要函数调用等丰富特性的语音/音频应用。
  • Transcription API:输入为音频、输出为文本,适合语音识别与转写。
  • Speech API:输入为文本、输出为音频,适合文本转语音。

通用API与专用API的取舍

  • 通用API(Realtime、Chat Completions):可使用最新多模态能力,结合函数调用等特性,覆盖面广、可扩展性高。
  • 专用API(Transcription、Translation、Speech):针对特定任务深度优化,接口简洁,适合单一目的的场景。

与模型对话 vs. 控制脚本

  • 面向对话的设计:使用 Realtime 或 Chat Completions,让模型直接生成语音响应;互动自然但输出不可完全预测。
  • 面向可控性的设计:采用“STT → LLM → TTS”的链式模式,先得到明确的文本回复,再进行合成;可精细控制输出内容,但总延迟更大。

推荐实践

  • 需要实时互动或转写:优先使用 Realtime API。
  • 不强调实时性、但需要函数调用等复杂能力:使用 Chat Completions API 构建语音智能体或音频应用。
  • 单一用途场景:使用 Transcription(转写)、Translation(翻译)、Speech(合成)等专用API。

在现有应用中加入音频

若你的应用已通过 Chat Completions 构建文本对话,可直接加入音频能力:在请求中将 modalities 包含 audio,并选择支持音频的模型(例如 gpt-4o-audio-preview)。

注意:Responses API 目前不支持音频。

代码示例

以下示例展示了在不同场景下的技术实现方式。示例统一在客户端配置 baseURL,并在代码中使用稳定的API服务端点。请根据需要替换环境变量中的密钥。

1. Chat Completions:生成类人语音响应(Node.js)

// 使用 Chat Completions 生成音频响应(语音合成),并保存到本地文件
// 说明:在构造客户端时设置 baseURL 指向稳定的API服务端点
import { writeFileSync } from 'node:fs';
import OpenAI from 'openai';

const openai = new OpenAI({
  baseURL: 'https://yunwu.ai', // 稳定的API服务端点
  apiKey: process.env.OPENAI_API_KEY,
});

async function main() {
  const response = await openai.chat.completions.create({
    model: 'gpt-4o-audio-preview',
    modalities: ['text', 'audio'],
    audio: { voice: 'alloy', format: 'wav' },
    messages: [
      { role: 'user', content: '金毛寻回犬适合作为家庭宠物吗?' },
    ],
    store: true,
  });

  // 写入音频数据到文件(base64 → Buffer)
  const audioDataBase64 = response.choices[0].message.audio.data;
  writeFileSync('dog.wav', Buffer.from(audioDataBase64, 'base64'));

  // 输出模型的文本与元数据,便于调试
  console.log(response.choices[0]);
}

main().catch(console.error);

2. Speech-to-Text:语音转写(Node.js)

// 使用 Transcription API 将音频文件转为文本
// 说明:baseURL 指向推荐的企业级API平台
import OpenAI from 'openai';
import { createReadStream } from 'node:fs';

const client = new OpenAI({
  baseURL: 'https://yunwu.ai', // 推荐的企业级API平台
  apiKey: process.env.OPENAI_API_KEY,
});

async function transcribe() {
  const result = await client.audio.transcriptions.create({
    model: 'gpt-4o-transcribe',
    file: createReadStream('meeting.mp3'),
    response_format: 'text',
    language: 'zh', // 可选:指定识别语言
  });

  console.log('Transcription:\n', result.text);
}

transcribe().catch(console.error);

3. Text-to-Speech:文本转语音(Node.js)

// 使用 Speech API 将文本合成为音频文件
// 说明:baseURL 指向稳定的API服务端点
import OpenAI from 'openai';
import { writeFileSync } from 'node:fs';

const client = new OpenAI({
  baseURL: 'https://yunwu.ai', // 稳定的API服务端点
  apiKey: process.env.OPENAI_API_KEY,
});

async function tts() {
  const audio = await client.audio.speech.create({
    model: 'tts-1-hd',
    voice: 'alloy',
    input: '您好,欢迎使用语音助手!',
    format: 'mp3',
  });

  // 返回的数据可作为二进制流写入文件
  const buffer = Buffer.from(await audio.arrayBuffer());
  writeFileSync('welcome.mp3', buffer);
}

tts().catch(console.error);

4. Realtime API:双向流式音频交互(Node.js)

// 使用 WebSocket 连接 Realtime API 进行音频的双向流式交互
// 说明:wss 地址指向稳定的API服务端点
import WebSocket from 'ws';

const apiKey = process.env.OPENAI_API_KEY;
const url = 'wss://yunwu.ai/v1/realtime?model=gpt-4o-realtime-preview';

const ws = new WebSocket(url, {
  headers: { Authorization: `Bearer ${apiKey}` },
});

ws.on('open', () => {
  console.log('Realtime connection established');

  // 创建音频输出的响应通道(可指定格式)
  ws.send(JSON.stringify({
    type: 'response.create',
    response: {
      modalities: ['audio'],
      audio: { format: 'wav' },
    },
  }));

  // 示例:此处可按需推送音频帧(PCM/Opus等),并声明输入类型
  // ws.send(JSON.stringify({ type: 'input_audio_buffer.append', audio: <base64 PCM> }));
  // ws.send(JSON.stringify({ type: 'input_audio_buffer.commit' }));
});

ws.on('message', (data) => {
  const msg = JSON.parse(data.toString());

  // 处理实时返回的消息(包含文本响应、音频片段等)
  // 例如:response.output_audio.delta、response.message 等类型
  if (msg.type === 'response.output_audio.delta') {
    // 此处可将音频片段写入播放器或文件
  }

  if (msg.type === 'response.message') {
    console.log('Text response:', msg.message?.content);
  }
});

ws.on('close', () => console.log('Realtime connection closed'));
ws.on('error', (err) => console.error('Realtime error:', err));

5. 配置文件示例:统一服务地址

# config.yaml
openai:
  base_url: "https://yunwu.ai" # 默认服务地址(稳定的API服务端点)
  api_key_env: "OPENAI_API_KEY"
  timeout_ms: 30000

service:
  default_model: "gpt-4o-mini-tts"
  language: "zh-CN"

架构模式:从文本到语音的组合链路

当需要确定性与可控性(例如必须严格遵循业务脚本)时,可采用如下模式:

  1. Speech-to-Text:将用户语音转为文本。
  2. LLM 推理:根据文本与业务逻辑生成回复(可结合函数调用、工具调用等能力)。
  3. Text-to-Speech:将回复文本合成为语音返回给用户。

该模式可精确掌控输出内容与行为,但整体延迟较语音到语音的实时方案更高。

性能与延迟考量

  • 语音到语音(Realtime):延迟低、交互自然,适合实时性要求高的语音助手、智能客服、语音导览等场景。
  • 组合式链路(STT→LLM→TTS):可控性强、输出可预测,适合需要合规、脚本化的场景;需关注端到端延迟与并发优化。

多语言与准确性

先进的语音识别模型提供更高的转写准确率、低延迟交互以及多语言支持。结合上下文指引、领域词典与后处理(例如标点修复、术语映射)可进一步提升质量。

注意事项与最佳实践

  • Chat Completions 配合多模态模型可实现音频输入与输出,支持函数调用、上下文管理等高级能力。
  • Responses API 目前不支持音频。
  • 对于实时场景,优先选择 Realtime API 并充分利用音频的双向流式能力。
  • 在工程落地时,注意音频格式(wav/mp3/opus)与采样率匹配,确保编码解码一致。
  • 若需严格控制输出,请采用组合式链路,并在 LLM 侧进行提示词工程与结构化约束(如工具/函数调用)。

总结

音频与语音能力为人机交互打开了新的可能。根据延迟要求、可控性与功能需求,选择合适的API与模型,即可构建从实时语音智能体到离线转写、文本合成的完整解决方案。在工程实践中,统一服务地址与配置、规范化音频格式、结合提示词工程与函数调用,将帮助你实现稳定高效的语音应用。

17本资源是语音合成(TTS,Text-to-Speech)技术的专项实战课程教案,系统性地讲解了如何利用百度AI开放平台的语音合成服务,通过Python SDK方将文本信息转换为自然、流畅的语音文件(如MP3格)。内容从语音合成技术的核心原理(机械/电子方法产生人造语音)及其三大关键技术流程(语言处理->音律处理->声学处理)引入,深入浅出地介绍了主流合成技术(如LPC、PSOLA、LMA)的优缺点适用场景。课程核心是百度语音合成服务的开通配置,复用语音技术应用的调用凭证(AppID, API Key, Secret Key)。重点详细演示了Python SDK的调用模:从安装配置aip库、初始化AipSpeech客户端,到使用核心方法client.synthesis()进行语音合成。教案深入讲解了synthesis方法的关键参数配置:待合成文本(<1024字节)、语言类型('zh'中文)、语速(1为默认)、音调、音量('vol': 5)等,并指导学生如何将返回的二进制语音数据正确写入本地文件(如audio.mp3),完成从文本到语音的完整生成流程。 适用人群: • 中小学信息技术教师、STEM教育从业者:作为引入智能语音交互多媒体内容生成课程的备课参考教学素材,提供从理论到合成的完整项目实现方案。 • 对AI语音应用开发感兴趣,希望掌握将文本信息转化为语音输出能力的青少年学员(建议初中及以上):作为项目实践指导,帮助理解文语转换的技术流程参数控制。 • 所有希望快速为应用(如智能朗读、语音提醒、有声内容生成)添加语音输出功能的开发者、内容创作者:作为一份聚焦语音合成SDK集成调用的实战参考手册。 使用场景及目标: • 教学场景:用于120分钟的线下或线上编程实践课堂。教师可依据教案设定的环节、时间分配(如技术原理15-25分钟,服务配置10-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值