线性关系 与 非线性关系

 

 

线性linear,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;
非线性non-linear则指不按比例、不成直线的关系,代表不规则的运动和突变。


线性:指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;
线性:指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;
非线性:则指不按比例、不成直线的关系,一阶导数不为常数。
线性关系:

两个变量之间存在一次方函数关系,就称它们之间存在线性关系。正比例关系是线性关系中的特例,反比例关系不是线性关系。更通俗一点讲,如果把这两个变量分别作为点的横坐标与纵坐标,其图象是平面上的一条直线,则这两个变量之间的关系就是线性关系。即如果可以用一个二元一次方程来表达两个变量之间关系的话,这两个变量之间的关系称为线性关系,因而,二元一次方程也称为线性方程。推而广之,含有n个变量的一次方程,也称为n元线性方程,不过这已经与直线没有什么关系了(其实这里是超平面的概念)。
线性方程:

线性方程也称一次方程。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0
线性关系:

两个变量之间存在一次方函数关系,就称它们之间存在线性关系。正比例关系是线性关系中的特例,反比例关系不是线性关系。更通俗一点讲,如果把这两个变量分别作为点的横坐标与纵坐标,其图象是平面上的一条直线,则这两个变量之间的关系就是线性关系。即如果可以用一个二元一次方程来表达两个变量之间关系的话,这两个变量之间的关系称为线性关系,因而,二元一次方程也称为线性方程。推而广之,含有n个变量的一次方程,也称为n元线性方程,不过这已经与直线没有什么关系了(其实这里是超平面的概念)。
线性方程:

线性方程也称一次方程。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0

非线性关系:
非线性是指两个变量间的数学关系,不是直线,而是曲线、曲面、或不确定的属性,是不成简单比例(线性)关系的。非线性是自然界复杂性的典型性质之一;与线性相比,非线性更接近客观事物性质本身,是量化研究认识复杂知识的重要方法之一;范式能用非线性描述的关系,通称非线性关系。

非线性方程:
非线性方程对比于线性方程,是含有高次项的方程,一阶导数不为常数的方程组。
 

共性

非线性关系虽然千变万化,但还是具有某些不同于线性关系的共性。

线性关系是互不相干的独立关系,而非线性则是相互作用,正是这种相互作用,使得整体不再是简单地全部等于部分之和,而可能出现不同于"线性叠加"的增益或亏损。

激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好像听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。

迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。



 

         

如果您喜欢,请多多支持打赏,支持养家感恩!

 

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页