今天在查询一个表行数的时候,发现count(1)和count(*)执行效率居然是一样的。这跟Oracle还是有区别的。遂查看两种方式的执行计划:
mysql> select count(1) from customer;
+----------+
| count(1) |
+----------+
| 150000 |
+----------+
1 row in set (0.03 sec)
mysql> flush tables;
Query OK, 0 rows affected (0.00 sec)
mysql> select count(*) from customer;
+----------+
| count(*) |
+----------+
| 150000 |
+----------+
1 row in set (0.03 sec)
查看执行计划:
mysql> explain select count(1) from customer;
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
| 1 | SIMPLE | customer | index | NULL | i_c_nationkey | 5 | NULL | 151191 | Using index |
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
1 row in set (0.00 sec)
mysql> explain select count(*) from customer;
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
| 1 | SIMPLE | customer | index | NULL | i_c_nationkey | 5 | NULL | 151191 | Using index |
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
1 row in set (0.00 sec)
mysql> show index from customer;
+----------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+----------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| customer | 0 | PRIMARY | 1 | c_custkey | A | 150525 | NULL | NULL | | BTREE | | |
| customer | 1 | i_c_nationkey | 1 | c_nationkey | A | 47 | NULL | NULL | YES | BTREE | | |
+----------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
2 rows in set (0.08 sec)
发现不管是count(1)或count(*)都是走的i_c_nationkey这个索引。平时我们检索数据的时候肯定是主键索引效率高,那么我们强制主键索引来看看:
mysql> select count(*) from customer force index(PRIMARY);
+----------+
| count(*) |
+----------+
| 150000 |
+----------+
1 row in set (0.68 sec)
mysql> explain select count(*) from customer force index(PRIMARY);
+----+-------------+----------+-------+---------------+---------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+-------+---------------+---------+---------+------+--------+-------------+
| 1 | SIMPLE | customer | index | NULL | PRIMARY | 4 | NULL | 150525 | Using index |
+----+-------------+----------+-------+---------------+---------+---------+------+--------+-------------+
1 row in set (0.00 sec)
可以看到走主键索引的时候效率比较差。那么是为什么呢。
平时我们检索一列的时候,基本上等值或范围查询,那么索引基数大的索引必然效率很高。但是在做count(*)的时候并没有检索具体的一行或者一个范围。那么选择基数小的索引对
count操作效率会更高。在做count操作的时候,mysql会遍历每个叶子节点,所以基数越小,效率越高。mysql非聚簇索引叶子节点保存的主键ID,所以需要检索两遍索引。但是这里相对于遍历主键索引。及时检索两遍索引效率也比单纯的检索主键索引快。
那么再以一个表作为证明:
mysql> explain select count(*) from lineitem;
+----+-------------+----------+-------+---------------+--------------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+-------+---------------+--------------+---------+------+---------+-------------+
| 1 | SIMPLE | lineitem | index | NULL | i_l_shipdate | 4 | NULL | 6008735 | Using index |
+----+-------------+----------+-------+---------------+--------------+---------+------+---------+-------------+
1 row in set (0.00 sec)
mysql> show index from lineitem;
+----------+------------+-----------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+----------+------------+-----------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| lineitem | 0 | PRIMARY | 1 | l_orderkey | A | 2997339 | NULL | NULL | | BTREE | | |
| lineitem | 0 | PRIMARY | 2 | l_linenumber | A | 5994679 | NULL | NULL | | BTREE | | |
| lineitem | 1 | i_l_shipdate | 1 | l_shipDATE | A | 5208 | NULL | NULL | YES | BTREE | | |
| lineitem | 1 | i_l_suppkey_partkey | 1 | l_partkey | A | 428191 | NULL | NULL | YES | BTREE | | |
| lineitem | 1 | i_l_suppkey_partkey | 2 | l_suppkey | A | 1998226 | NULL | NULL | YES | BTREE | | |
| lineitem | 1 | i_l_partkey | 1 | l_partkey | A | 461129 | NULL | NULL | YES | BTREE | | |
| lineitem | 1 | i_l_suppkey | 1 | l_suppkey | A | 19213 | NULL | NULL | YES | BTREE | | |
| lineitem | 1 | i_l_receiptdate | 1 | l_receiptDATE | A | 17 | NULL | NULL | YES | BTREE | | |
| lineitem | 1 | i_l_orderkey | 1 | l_orderkey | A | 2997339 | NULL | NULL | | BTREE | | |
| lineitem | 1 | i_l_orderkey_quantity | 1 | l_orderkey | A | 1998226 | NULL | NULL | | BTREE | | |
| lineitem | 1 | i_l_orderkey_quantity | 2 | l_quantity | A | 5994679 | NULL | NULL | YES | BTREE | | |
| lineitem | 1 | i_l_commitdate | 1 | l_commitDATE | A | 7836 | NULL | NULL | YES | BTREE | | |
+----------+------------+-----------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
12 rows in set (0.96 sec)
这里一看l_shipDATE并不是基数最小的呀,殊不知这个统计信息是不准确的。我们用sql看一下。
mysql> select count(distinct(l_shipDATE)) from lineitem;
+-----------------------------+
| count(distinct(l_shipDATE)) |
+-----------------------------+
| 2526 |
+-----------------------------+
1 row in set (0.01 sec)
那么比他小的那些列呢?
mysql> select count(distinct(l_receiptDATE)) from lineitem;
+--------------------------------+
| count(distinct(l_receiptDATE)) |
+--------------------------------+
| 2554 |
+--------------------------------+
1 row in set (0.01 sec)
其他就不看了,这里再次说明mysql选择了基数小的索引。