P1706 全排列问题

题目描述

按照字典序输出自然数 1 到 n 所有不重复的排列,即 n 的全排列,要求所产生的任一数字序列中不允许出现重复的数字。

输入格式

一个整数 n。

输出格式

由1∼n 组成的所有不重复的数字序列,每行一个序列。

每个数字保留 5 个场宽。

输入输出样例

输入 #1

3

输出 #1

    1    2    3
    1    3    2
    2    1    3
    2    3    1
    3    1    2
    3    2    1

说明/提示

1≤n≤9。

思路

这道题显然直接用for循环直接暴力枚举是不现实的,因为要n的个数不定,不好确定要多少个for循环,而且这样也不方便,所以这道题更推荐的是深度优先搜索算法(DFS)。

深度优先搜索(DFS)是一种用于遍历或搜索树或图的算法。这种算法会尽可能深地搜索树的分支,直到到达叶节点,然后回溯到上一个节点,继续搜索下一个分支。深度优先搜索的名字来源于其深度优先的搜索方式。

简而言之,就是选取数据中的元素作为起始点,按顺序逐个往下记录,当满足每一个答案所需个数时,就返回到上一层的递归,再进行下一个数的递归;

以下是dfs的基本框架,我将其分为两种,一种是像这道题一样的,即使数字一样,但是顺序不同,仍然视作不同答案,如: 1 2 3 和 3 2 1 。另一种是这两种视作一种答案(在另一道题会呈现)。即好比高中学的组合和排列,组合是每一个元素都是相同的,所以即使顺序不同也是同种答案,而排列是每一个元素的是不同的,所以顺序不同是不同的答案。

int n; // n 为 元素的总数
int vec[10]; // vec 记录每一组答案
int book[10]; // book 记录该数有没有被用过,有则为1,没有则为0。
void dfs(int temp) {
	if (temp == n) {//temp 为进行到第几步了,当temp达到所需的步数时,即可进入if语句,将vec记录的数据输出
		for (int i = 0; i < n; i++) {
			cout << vec[i] << endl;
		}
		return;
	}
	for (int i = 1; i <= n; i++) {//从第一个元素开始遍历
		if (book[i] != 1) {
			book[i] = 1;// 记录了i,book[i]就变为1
			vec[temp] = i;//vec记录下i
			dfs(temp + 1);//步数+1,进入下一个递归
			book[i] = 0;//从 “ dfs(temp + 1) ” 这一步回来后 , 将i重新记录为未用
		}
	}
}

第一次看可能会有的难懂这个递归,我演示第一种答案,其余的继续推演下去即可:

主函数中 dfs(0);

temp = 0进入递归,if (temp == n)语句不成立,进去for循环,i = 1,book[1]!=1成立,进入if (book[i] != 1)语句,book[1]=1,1不能再用了,vec[0] = 1;

再进入第二个递归,temp = 1,if (temp == n)语句不成立,进去for循环,i = 1,book[1]!=1不成立,i = 2,book[2]!=1成立,进入if (book[i] != 1)语句,book[2]=1,2不能再用了,vec[1] = 2;

再进入第三个递归,temp = 2,if (temp == n)语句不成立,进去for循环,i = 1,book[1]!=1不成立,i = 2,book[2]!=2不成立,i = 3,book[3]!=1成立,进入if (book[i] != 1)语句,book[3]=1,3不能再用了,vec[2] = 3;

再进入第四个递归,temp = 3,if (temp == n)语句成立,输出vec:1 2 3;

希望看到这个推演大家能比较清晰的了解这个递归是怎么进行的,以上都是我自己总结的看法,如果有哪里说得不对,请斧正。

以下就呈现AC代码啦!

AC代码

#include<iostream>
#include<iomanip>
#include<string.h>
using namespace std;
typedef long long ll;
int n;
int vec[10];
int book[10];
void dfs(int temp) {
	if (temp == n) {
		for (int i = 0; i < n; i++) {
			cout << setw(5) << vec[i];/*题目要求每个数字保留 5个场宽,这里使用setw(5)来实现,需要调用#include<cstring>这一头文件*/
		}
		cout << endl;
		return;
	}
	for (int i = 1; i <= n; i++) {
		if (book[i] != 1) {
			book[i] = 1;
			vec[temp] = i;
			dfs(temp + 1);
			book[i] = 0;
		}
	}
}
void solve()
{
	cin >> n;
	memset(book, 0, sizeof(book));//将book中所有元素的初始值都变为0,需要调用#include<iomanip>这一头文件
	dfs(0);
}
int main()
{
	int t = 1;
	cin.tie(0)->ios::sync_with_stdio(false);
	while (t--) {
		solve();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值