题目描述
按照字典序输出自然数 1 到 n 所有不重复的排列,即 n 的全排列,要求所产生的任一数字序列中不允许出现重复的数字。
输入格式
一个整数 n。
输出格式
由1∼n 组成的所有不重复的数字序列,每行一个序列。
每个数字保留 5 个场宽。
输入输出样例
输入 #1
3
输出 #1
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
说明/提示
1≤n≤9。
思路
这道题显然直接用for循环直接暴力枚举是不现实的,因为要n的个数不定,不好确定要多少个for循环,而且这样也不方便,所以这道题更推荐的是深度优先搜索算法(DFS)。
深度优先搜索(DFS)是一种用于遍历或搜索树或图的算法。这种算法会尽可能深地搜索树的分支,直到到达叶节点,然后回溯到上一个节点,继续搜索下一个分支。深度优先搜索的名字来源于其深度优先的搜索方式。
简而言之,就是选取数据中的元素作为起始点,按顺序逐个往下记录,当满足每一个答案所需个数时,就返回到上一层的递归,再进行下一个数的递归;
以下是dfs的基本框架,我将其分为两种,一种是像这道题一样的,即使数字一样,但是顺序不同,仍然视作不同答案,如: 1 2 3 和 3 2 1 。另一种是这两种视作一种答案(在另一道题会呈现)。即好比高中学的组合和排列,组合是每一个元素都是相同的,所以即使顺序不同也是同种答案,而排列是每一个元素的是不同的,所以顺序不同是不同的答案。
int n; // n 为 元素的总数
int vec[10]; // vec 记录每一组答案
int book[10]; // book 记录该数有没有被用过,有则为1,没有则为0。
void dfs(int temp) {
if (temp == n) {//temp 为进行到第几步了,当temp达到所需的步数时,即可进入if语句,将vec记录的数据输出
for (int i = 0; i < n; i++) {
cout << vec[i] << endl;
}
return;
}
for (int i = 1; i <= n; i++) {//从第一个元素开始遍历
if (book[i] != 1) {
book[i] = 1;// 记录了i,book[i]就变为1
vec[temp] = i;//vec记录下i
dfs(temp + 1);//步数+1,进入下一个递归
book[i] = 0;//从 “ dfs(temp + 1) ” 这一步回来后 , 将i重新记录为未用
}
}
}
第一次看可能会有的难懂这个递归,我演示第一种答案,其余的继续推演下去即可:
主函数中 dfs(0);
temp = 0进入递归,if (temp == n)语句不成立,进去for循环,i = 1,book[1]!=1成立,进入if (book[i] != 1)语句,book[1]=1,1不能再用了,vec[0] = 1;
再进入第二个递归,temp = 1,if (temp == n)语句不成立,进去for循环,i = 1,book[1]!=1不成立,i = 2,book[2]!=1成立,进入if (book[i] != 1)语句,book[2]=1,2不能再用了,vec[1] = 2;
再进入第三个递归,temp = 2,if (temp == n)语句不成立,进去for循环,i = 1,book[1]!=1不成立,i = 2,book[2]!=2不成立,i = 3,book[3]!=1成立,进入if (book[i] != 1)语句,book[3]=1,3不能再用了,vec[2] = 3;
再进入第四个递归,temp = 3,if (temp == n)语句成立,输出vec:1 2 3;
希望看到这个推演大家能比较清晰的了解这个递归是怎么进行的,以上都是我自己总结的看法,如果有哪里说得不对,请斧正。
以下就呈现AC代码啦!
AC代码
#include<iostream>
#include<iomanip>
#include<string.h>
using namespace std;
typedef long long ll;
int n;
int vec[10];
int book[10];
void dfs(int temp) {
if (temp == n) {
for (int i = 0; i < n; i++) {
cout << setw(5) << vec[i];/*题目要求每个数字保留 5个场宽,这里使用setw(5)来实现,需要调用#include<cstring>这一头文件*/
}
cout << endl;
return;
}
for (int i = 1; i <= n; i++) {
if (book[i] != 1) {
book[i] = 1;
vec[temp] = i;
dfs(temp + 1);
book[i] = 0;
}
}
}
void solve()
{
cin >> n;
memset(book, 0, sizeof(book));//将book中所有元素的初始值都变为0,需要调用#include<iomanip>这一头文件
dfs(0);
}
int main()
{
int t = 1;
cin.tie(0)->ios::sync_with_stdio(false);
while (t--) {
solve();
}
return 0;
}