组合数学 完整版

一、组合数学介绍

1、组合数学用于解决2种问题

A、某种结构的存在性

B、某种结构的数量

二、乘法法则

定义

假设一个任务,可以被分解成两个任务,完成任务1有n1种方式。完成任务一之后,完成任务二有n2种方式。那么完成总任务的方式n1*n2种。该定理可以推广到分解为多个任务。

例题

1、有四个字母,分别ABCD,有两个数,他们分别要选四个数,问一共有几种选法

这道题我们可以这样解:

设两个数分别是1和2,1可以选A,2可以选ABCD如下图

1还可以选择B,那2可以选ABCD如下图

以此类推所以一共有

  1. 又四个字母,分别ABCD,有两个数(1和2),他们分别要选四个数,但是2要比1选的字母小(顺序靠后),问一共有几种选法

这道题我们可以这样解:

1选则了A,那2就要选BCD,如下图

根据上图,所以得出结果为

三、加法法则

定义

设事件 A 有 m 种产生方式, 事件 B 有n 种产生方式,则当 A 与 B 产生的方式不重叠时,“事件 A 或 B 之一” 有m+n 种产生方式。事件 A1有 p1种产生方式, 事件 A2 有p2种产生方式……事件 Ak 有 pk种产生的方式,则当其中任何两个事件产生的方式都不重叠时,“事件 A1 或A2或… Ak” 有 p1+p2+…+pk种产生的方式。如下图

例题

这个题我们可以这样解:

密码为6位,7位,8位,所以这是三种不同的类别,而题目又说密码的内容包括大写字母和数字,所以,每个数位都有36种选择,则密码是6位的一共就有种,7位的有种,8位有种,因为这是三种不同的分类,所以要加起来一共就是种可能性。

易错题

这个题不是运用加法法则,而是乘法法则,因为这是一整串密码,不是分开始的,因此这道题的答案是种可能

四、 减法法则(容斥原理)

定义

集合:若干个元素组成的无序的聚集(包括0,0个元素代表的是空集)若干个元素指的是集合里面元素的个数,它可以是3个,10个,100个,也就是个,集合包括N(自然数集)、R(实数集,实数集指有理数集和无理数集)、Z(整数集),或者是集合里面还有集合,如下图

这个集合的元素个数是2,而不是4。

在集合中,不能出现相同的元素,如{1,1,1,2}这样的集合是不合法的。但是像{1,1,2}和{1,2,1}这两个集合是相同的,也就是说在集合内,只要元素相同,这个集合就是一样的。

集合的运算

  1. 交集(∩)

定义

两个集合的交集:两个集合中相同的元素组成的集合

  1. 并集(∪)

定义

两个集合的并集:由在两个集合中其中一个或两个里面出现的元素组成的集合

A和B的并集:存在于A中元素存在与B中的元素组成的集合

  1. 模(| |)

定义

集合的模:集合中元素的个数

  1. 公式总结

五、鸽巢原理

A、狭义鸽巢原理

定义:如果有K+1个或者更多的物品放到K个盒子里。

B、广义鸽巢原理

定义:N个物品放到M个盒子里,一定有一个盒子物品数量>=(N/M)(向上取整)

鸽巢原理

六、组合数学题目

  1. 题目

(1)N个物品分成不同的K组(要求每组不能为空)

视频讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值