一、组合数学介绍
1、组合数学用于解决2种问题
A、某种结构的存在性
B、某种结构的数量
二、乘法法则
定义
假设一个任务,可以被分解成两个任务,完成任务1有n1种方式。完成任务一之后,完成任务二有n2种方式。那么完成总任务的方式n1*n2种。该定理可以推广到分解为多个任务。
例题
1、有四个字母,分别ABCD,有两个数,他们分别要选四个数,问一共有几种选法
这道题我们可以这样解:
设两个数分别是1和2,1可以选A,2可以选ABCD如下图

1还可以选择B,那2可以选ABCD如下图

以此类推所以一共有 种
又四个字母,分别ABCD,有两个数(1和2),他们分别要选四个数,但是2要比1选的字母小(顺序靠后),问一共有几种选法
这道题我们可以这样解:
1选则了A,那2就要选BCD,如下图


根据上图,所以得出结果为
三、加法法则
定义
设事件 A 有 m 种产生方式, 事件 B 有n 种产生方式,则当 A 与 B 产生的方式不重叠时,“事件 A 或 B 之一” 有m+n 种产生方式。事件 A1有 p1种产生方式, 事件 A2 有p2种产生方式……事件 Ak 有 pk种产生的方式,则当其中任何两个事件产生的方式都不重叠时,“事件 A1 或A2或… Ak” 有 p1+p2+…+pk种产生的方式。如下图

例题

这个题我们可以这样解:
密码为6位,7位,8位,所以这是三种不同的类别,而题目又说密码的内容包括大写字母和数字,所以,每个数位都有36种选择,则密码是6位的一共就有种,7位的有
种,8位有
种,因为这是三种不同的分类,所以要加起来一共就是
种可能性。
易错题

这个题不是运用加法法则,而是乘法法则,因为这是一整串密码,不是分开始的,因此这道题的答案是种可能
四、 减法法则(容斥原理)
定义
集合:若干个元素组成的无序的聚集(包括0,0个元素代表的是空集)若干个元素指的是集合里面元素的个数,它可以是3个,10个,100个,也就是
个,集合包括N(自然数集)、R(实数集,实数集指有理数集和无理数集)、Z(整数集),或者是集合里面还有集合,如下图

这个集合的元素个数是2,而不是4。
在集合中,不能出现相同的元素,如{1,1,1,2}这样的集合是不合法的。但是像{1,1,2}和{1,2,1}这两个集合是相同的,也就是说在集合内,只要元素相同,这个集合就是一样的。
集合的运算
交集(∩)
定义
两个集合的交集:两个集合中相同的元素组成的集合

并集(∪)
定义
两个集合的并集:由在两个集合中其中一个或两个里面出现的元素组成的集合
A和B的并集:存在于A中元素或存在与B中的元素组成的集合

模(| |)
定义
集合的模:集合中元素的个数

公式总结

五、鸽巢原理
A、狭义鸽巢原理
定义:如果有K+1个或者更多的物品放到K个盒子里。
B、广义鸽巢原理
定义:N个物品放到M个盒子里,一定有一个盒子物品数量>=(N/M)(向上取整)
见鸽巢原理
六、组合数学题目
题目