上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1Sample Output
Yes Yes No
今天做题的时候有一个感触,有的条件作为实际的问题,是要转化实际的代码的,有的条件该忽略就得忽略,毫不含糊!
题中说1 、2是成立的,3是不成立的,为什么?
因为图例3中3、 5 、6、 8构成回路了,对,在解决问题的时候我们就要判断是否构成回路,问题来了,怎么判断?
https://mp.csdn.net/postedit/86523098
在对这一部分知识进行归纳的时候有说到 初始化、 找祖先、 合并 三部分
现在对于这个问题,关键点应该在合并上面,就是说,如果两个数已经有了共同的祖先,然后再对其进行合并的话,就会导致回路的产生,那么我们就要可以用一个变量记录下标,判断是否构成回路。
题中的例子完美地把所有数在一个树形图中展示了出来,数据这么大,难免会有数据是单独出现的,单独出现的数据也就构成了新的树形图,那这样就不对了,因为只要设计一个迷宫。
妙哉的并查集,我们就判断这些出现过的数是否有一个共同的祖先,如果说不是共同的祖先的话,就代表出现了两个或者两个以上的图,那么这样就是错误的。
额,思路就是这么多了~~~
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int s[100005];
int father[100005];
int t=0;
int f=0,jj=0;
int x,y;
int Find(int x)
{
if(x!=father[x])
father[x]=Find(father[x]);
return father[x];
}
void combine(int x,int y)
{
int fa=Find(x);
int fb=Find(y);
if(fa!=fb)
father[fa]=fb;
else if(fa==fb)//两个已经有了共同的祖先,再连接就错了
{
f=1;
}
}
int main()
{
for(int i=1; i<=100000; ++i)
father[i]=i;
while(~scanf("%d %d",&x,&y)&&(x!=-1&&y!=-1))
{
if(x==0&&y==0)
{
//神圣的结束判断
int t,i;
int xxx;
for(i=1; i<=100000; ++i)
{
if(s[i]==1)
{
xxx=Find(i);
break;
}
}
//接下来就是从i开始走了
for(int j=i+1; j<=100000; ++j)
{
if(s[j]==1&&xxx!=Find(j))
{
jj=1;
break;
}
}
if(jj==0&&f==0)
printf("Yes\n");
else
printf("No\n");
f=0,jj=0;
memset(s,0,sizeof(s));
for(int i=1; i<=100000; ++i)
father[i]=i;
getchar();
}
else
{
s[x]=1,s[y]=1;
combine(x,y);//两个人找祖先
}
}
return 0;
}