Yarn 基础知识扫盲(一)
目录
前言
笔者自己以前一直在做实时开发方面的工作,对Yarn 其实并不是很了解,只是简单用而已。但最近的工作中要开始涉及这里的使用。所以准备重新学习下,并记录下来。
思考:如何管理集群资源?
如何给任务合理分配资源?
Yarn 就是解决上述问题的产物。Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce、Spark、Flink 等运算程序则相当于运行于操作系统之上的应用程序。
1.1 Yarn 基础架构
YARN主要由ResourceManager、NodeManager、ApplicationMaster和Container等组件构成。
1.2 Yarn 工作机制
(1)MR程序提交到客户端所在的节点。
(2)YarnRunner向ResourceManager申请一个Application。
(3)RM将该应用程序的资源路径返回给YarnRunner。
(4)该程序将运行所需资源提交到HDFS上。
(5)程序资源提交完毕后,申请运行mrAppMaster。
(6)RM将用户的请求初始化成一个Task。
(7)其中一个NodeManager领取到Task任务。
(8)该NodeManager创建容器Container,并产生MRAppmaster。
(9)Container从HDFS上拷贝资源到本地。
(10)MRAppmaster向RM 申请运行MapTask资源。
(11)RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
(12)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
(13)MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
(14)ReduceTask向MapTask获取相应分区的数据。
(15)程序运行完毕后,AM会向RM申请注销自己。
1.3 作业提交全过程(MR)
(1)作业提交
第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。
第2步:Client向RM申请一个作业id。
第3步:RM给Client返回该job资源的提交路径和作业id。
第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。
第5步:Client提交完资源后,向RM申请运行MrAppMaster。
(2)作业初始化
第6步:当RM收到Client的请求后,将该job添加到容量调度器中。
第7步:某一个空闲的NM领取到该Job。
第8步:该NM创建Container,并产生MRAppmaster。
第9步:下载Client提交的资源到本地。
(3)任务分配
第10步:MrAppMaster向RM申请运行多个MapTask任务资源。
第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
(4)任务运行
第12步:AppMaster向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
第14步:ReduceTask向MapTask获取相应分区的数据。
第15步:程序运行完毕后,mrAppMaster会向RM申请注销自己。
(5)进度和状态更新
YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。
(6)作业完成
除了向应用管理器请求作业进度外, 客户端每5秒都会通过调用waitForCompletion()来检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。
1.4 Yarn 调度器和调度算法
如上所述,Client 向RM提交作业(Task),在分布式环境中肯定是多客户端提交任务。Task 多了后RM 把他放到任务队列中,让任务队列来管理任务。主要是管理哪个任务先执行,每个任务分配多少资源,有几个并发的任务能运行,都由作业调度器决定。
目前,Hadoop作业调度器主要有三种:FIFO、容量(Capacity Scheduler)和公平(Fair Scheduler)。Apache 默认的资源调度器是Capacity Scheduler。CDH框架默认调度器是Fair Scheduler。
具体设置详见:yarn-default.xml文件
<property>
<description>The class to use as the resource scheduler. </description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
1.4.1 先进先出调度器(FIFO)
FIFO调度器(First In First Out):单队列,根据提交作业的先后顺序,先来先服务。
优点:简单易懂;
缺点:不支持多队列,生产环境很少使用;
1.4.2 容量调度器(Capacity Scheduler)
Capacity Scheduler是Yahoo开发的多用户调度器。
1.多队列:每个队列可配置一定的资源量,每个队列采用FIFO调度策略。
2.容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
3.灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦队列有新的应用程序提交,则会按第一优先级把借调的资源强回来
4.多租户:
支持多用户共享集群和多应用程序同时运行。
为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限制
1.4.2.1 容量调度器资源分配算法
1.队列资源分配:
从root 开始,使用深度优先算法,优先选择资源占用率最低的队列分配资源。
2.作业资源分配:
默认按提交作业的优先级和提交时间顺序分配资源
3.容器资源分配:
按容器优先级分配资源,若优先级相同,按数据本地性原则:
1.任务和数据在同一节点
2.任务和数据在同一机架
3.任务和数据不在同一节点也不在同一机架
1.4.3 公平调度器(Fair Scheduler)
Fair Schedulere是Facebook开发的多用户调度器。
与容量调度器相同点:
1.多队列:支持多队列多任务
2.容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
3.灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦队列有新的应用程序提交,则会按第一优先级把借调的资源强回来
4.多租户:支持多用户共享集群和多应用程序同时运行。为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限制
与容量调度器不同点:
1.核心调度策略不同
容量调度器:优先选择资源利用率低的队列
公平调度器:优先选择对资源的缺额比例大的
缺额 :某一时刻一个作业应获取资源和实际获取资源的差距叫缺额。调度器会优先为缺额大的作业分配资源
2.每个队列可以单独设置资源分配方式
容量调度器:FIFO,DRF
公平调度器:FIFO,FAIR,DRF
1.4.3.1 公平调度器资源分配算法
实际最小资源份额:mindshare=Min(资源需求量,配置的最小资源) 是否饥饿:isNeedy=资源使用量
<实际最小资源份额:mindshare(实际最小资源份额) 资源分配比:mindshareRatio=资源使用量/Min(资源需求量,1)
资源使用权重比:useToWeightRatio=资源使用量/权重
Fair 策略(默认)是一种基于最大最小公平算法时间的资源多路复用方式,默认情况下,每个队列内部采用该方式分配资源。
这意味着,如果一个队列中有两个应用程序同时运行,则每个应用程序可得到1/2的资源,如果三个应用程序就是1/3资源。