
Yarn
淡定一生2333
这个作者很懒,什么都没留下…
展开
-
Flink On Yarn container频繁被Kill
Q3经验案例 将Flink Job提交到Yarn上运行,命令行中指定:-p 3 –yts 1,那么便会启动一个拥有3个TaskManager的Flink集群,在Yarn中对应的就是3个container。但是运行一段时间后发现其中某个Container会反复重新启动,如下图所示,Container的编号都到49了:从TaskManager的Flink WebUi界面点击进去,查询到对应的Container的日志文件位置,在文件中找到了如下内容,发现Container被Kil...原创 2020-08-09 23:16:05 · 2492 阅读 · 1 评论 -
SparkOnYarn-Container启动流程
Spark On Yarn程序的启动流程和之前的那篇《Yarn初步了解》文章中的“应用程序的”开发流程是一样的。先在某个NodeManager(NM)节点上启动Application Master(AM),再由AM向ResourceManager(RM)申请资源创建Container,最后AM收到RM创建成功的消息后,由AM向RM发送请求启动这些Container,然后就可以在这些Cont...原创 2019-12-09 20:36:40 · 1125 阅读 · 0 评论 -
Yarn的CapacityScheduler与DRF了解
Capacity Scheduler以队列为单位划分资源,每个队列可以设定一定比例的资源最低保证和使用上限,每个用户也可以设定一定的资源使用上限以防止滥用队列中的资源。当一个队列的资源有剩余时,可暂时将剩余资源给其他队列使用。 在yarn-site.xml文件中指定使用CapacityScheduler <property> <name...原创 2019-11-07 19:59:46 · 990 阅读 · 0 评论 -
Yarn初步了解
项目中打算Spark任务都放到Yarn上统一进行资源管理,所以打算分析Spark on Yarn的运行流程和Yarn自身的资源管理机制,在此之前先大概了解下一般Yarn上的任务大致是怎么运行起来的。Yarn架构简介: YARN 是在 MRv1 基础上演化而来的,为了解决MRv1无法支持多种计算框架、资源利用率低、扩展性差和可靠性差等问题。将其中的资源管理功能抽象出来做成...原创 2019-07-20 12:48:22 · 347 阅读 · 0 评论 -
Yarn的资源管理机制
资源调度器是Yarn的核心组件之一,它是ResourceManager中的一个组件,负责整个集群资源的管理和分配。ResourceManager要处理的各种事件:ResourceManager本质上是一个事件处理器,处理来自外部的各种SchedulerEventType类型的事件,然后对Yarn上的资源做一些调整,事件有如下几种:部分事件对应的动作如下:...原创 2019-07-20 16:53:20 · 4995 阅读 · 0 评论 -
SparkOnYarn资源申请
当前项目中是将Spark任务提交到Yarn上运行的,但是发现了一个问题,这个任务在Yarn占用的内存远超程序中所申请的内存两。例如我现在有一个yarn-client模式运行任务,向Yarn申请两个Executor,每个Executor使用1G内存,Driver内存配置的是5G,发现Yarn给程序分配的内存如下: Yarn启动了3个Container,内存给了4.125G…所以...原创 2019-09-02 21:13:52 · 1719 阅读 · 0 评论