数据结构
数据结构是相互之间存在一种或多种特定关系的数据元素的集合。它包括数据的逻辑结构、数据的存储结构和数据的基本运算。
数据的逻辑结构
数据的逻辑结构是指数据元素之间的逻辑关系。所谓逻辑关系是指数据元素之间的关联方式或“邻接关系”。 逻辑结构与数据元素本身的形式、内容、相对位置、个数无关。逻辑结构有集合、线性结构、树形结构、图结构。
需要注意的:逻辑结构与数据元素本身形式,内容无关。 逻辑结构与数据元素的相对位置无关。 逻辑结构与所含结点个数无关。
集合、线性结构、树形结构、图结构逻辑结构示意图
集合
任意两个结点之间都没有邻接关系,组织形式松散。类似于操场上上广播体操的学生,相互之间没有关联。
线性结构
结点按逻辑关系依次排列形成一条“链”,结点之间一个一 个依次相邻接。类似于拔河比赛的一方,一根线串起来,彼此相邻。
树形结构
具有分支、层次特性,上层的结点可以和下层多个结点相邻接,但下层结点只能和上层的一个结点相邻接。类似于家族图谱有上下级关系。
图结构
最复杂,其中任何两个结点都可以相邻接。
数据的存储结构
顺序存储结构
借助数据元素的相对存储位置来表示数据元素之间的逻辑结构;
线性表的顺序存储方法:将表中的结点一次存放在计算机内存中一组连续的存储单元中。
- 预先分配好长度,需要预估存储数据需要的存储量。
- 插入和删除需要移动其他元素。
- 存取快捷,是随机存取结构。
链式存储结构
每个存储结点除了含有一个数据元素外,还包含指针,每个指针指向一个与本结点有逻辑关系的结点,用数据元素地址的指针表示数据元素之间的逻辑关系。
- 动态分配,不需要预先确定内存分配。
- 插入和删除不需要移动其他元素。
- 非随机存取结构。
索引存储方式
借助索引表中的索引指示各存储节点的存储位置。
散列存储方式
用散列函数指示各节点的存储位置。
数据的基本运算
运算是指在某种逻辑结构上施加的操作,即对逻辑结构的加工。这种加工以数据的逻辑结构为对象。一般来说,在每个逻辑结构上,都定义了一组基本运算,这些运算包括:建立、查找、读取、插入和删除等。
数据、数据元素和数据项
数据:所有被计算机存储、处理的对象。
数据元素:数据的基本单位,是运算的基本单位,又简称为元素。在程序中作为一个整体而加以考虑和处理。数据元素通常具有完整确定的实际意义。
数据项:数据元素由数据项组成。在数据库中数据项又称为字段或域。它是数据的不可分割的最小标识单位。
线性表、栈、队列
线性表、栈(后进先出,例如行李箱行李)、和队列(头部删除,尾部插入,例如银行排队)中的元素具有相同的逻辑结构(即线性结构),但有不同的运算集,它们是不同的数据结构。
时间复杂度
算法运行时需要的总步数,通常是算法输入规模的函数。
如何确定算法的计算量:合理地选择一种或几种操作作为“标准操作”,无特殊说明,默认以赋值语句作为标准操作。确定每个算法共执行多少次标准操作,并将此次数规定为该算法的计算量。
- 以算法在所有输入下的计算量的最大值作为算法的计算量,称为算法的最坏情况时间复杂度。
- 以算法在所有输入下的计算量的加权平均值作为算法的计算量,称为算法的平均情况时间复杂度。
- 最坏情况时间复杂度和平均情况时间复杂度通称为时间复杂度。
常见的时间复杂度阶数:按数量级递增排序
- 常数阶 O(1):即算法的时间复杂度与输入规模 n无关。
- 对数阶 O (log2n)
- 线性阶 O (n)
- 多项式阶 O (nC):常见的多项式阶有 O(n2)和 O(n3)。
- 指数阶 O (Cn),C为大于 1 的正整数。常见的指数阶有 O(2n)。通常认为,时间复杂度具有指数阶的算法是实际不可计算的,而阶数低于平方阶的算法是高效率的。
空间复杂度
算法执行时所临时占用的存储空间大小的亮度,通常是问题规模 n 的函数。 包含以下部分
- 程序代码所占用的空间
- 输入数据所占用的空间
- 辅助变量所占用的空间,估算算法空间复杂度时一般只分析辅助变量所占用的空间。