位运算与Hash
1.位运算
1.1 补码、原码、反码
- 1.在计算机系统中,数字一律用补码表示、运算和存储。
原码:原码表示法在数字前面增加了一位符号位,即最高位为符号位,正数位该位为0,负数位该位为1.比如十进制的5如果用8个二进制位来表示就是00000101,-5就是10000101。
反码:正数的反码是其本身,负数的反码在其原码的基础上,符号位不变,其余各个位取反。5的反码就是00000101,而-5的则为11111010。
补码:正数的补码是其本身,负数的补码在其原码的基础上,符号位不变,其余各位取反,最后+1。即在反码的基础上+1。5的反码就是00000101,而-5的则为11111011。
1.2 为什么计算机系统中,数字用补码表示
计算机保存最原始的数字,也是没有正和负的数字,叫没符号数字
如果我们在内存分配4位(bit)去存放无符号数字,是下面这样子的
为了表示正与负,人们发明了"原码",把生活应该有的正负概念,原原本本的表示出来
把左边第一位腾出位置,存放符号,正用0来表示,负用1来表示
但使用“原码”储存的方式,方便了看的人类,却苦了计算机
我们希望 (+1)和(-1)相加是0,但计算机只能算出0001+1001=1010 (-2)
这不是我们想要的结果 (╯’ - ')╯︵ ┻━┻
另外一个问题,这里有一个(+0)和(-0)
为了解决“正负相加等于0”的问题,在“原码”的基础上,人们发明了“反码”
“反码”表示方式是用来处理负数的,符号位置不变,其余位置相反
当“原码”变成“反码”时,完美的解决了“正负相加等于0”的问题
过去的(+1)和(-1)相加,变成了0001+1101=1111,刚好反码表示方式中,1111象征-0
人们总是进益求精,历史遗留下来的问题—— 有两个零存在,+0 和 -0
我们希望只有一个0,所以发明了 补码,同样是针对"负数"做处理的
"补码"的意思是,从原来"反码"的基础上,补充一个新的代码,(+1)
我们的目标是,没有蛀牙(-0)
有得必有失,在补一位1的时候,要丢掉最高位
我们要处理"反码"中的"-0",当1111再补上一个1之后,变成了10000,丢掉最高位就是0000,刚好和左边正数的0,完美融合掉了
这样就解决了+0和-0同时存在的问题
另外"正负数相加等于0"的问题,同样得到满足
举例,3和(-3)相加,0011 + 1101 =10000,丢掉最高位,就是0000(0)
同样有失必有得,我们失去了(-0) , 收获了(-8)
以上就是"补码"的存在方式
结论:保存正负数,不断改进方案后,选择了最好的补码方案
1.3 位运算使用
位操作只能用于整型,对于float或double,编译器会报错。
位运算的运算符优先级较低
位运算都是对于补码来说,操作的是负数,则必须转换为对应的补码进行操作
细化 | 符号 | 描述 | 运算规则 |
---|---|---|---|
按位运算 | & | 与 | 两位都为1,那么结果为1 |
| | 或 | 有一位为1,那么结果为1 | |
~ | 非 | ~0 = 1,~1 = 0 | |
^ | 异或 | 两位不相同,结果为1 | |
移位运算 | << | 左移 | 各二进制位全部左移N位,高位丢弃,低位补0 |
>> | 右移 | 各二进制位全部右移N位,若值为正,则在高位插入 0,若值为负,则在高位插入 1 | |
>>> | 无符号右移 | 各二进制位全部右移N位,无论正负,都在高位插入0 |
1.4 位运算的常用小技巧
1.4.1 判断奇偶数
通过与运算判断奇偶数,伪代码如下:
n&1 == 1?”奇数”:”偶数”
奇数最低位肯定是1,而1的二进制最低位也是1,其他位都是0,所以所有奇数和1与运算结果肯定是1。
1.4.2 权限系统设计
在一个系统中,用户一般有查询(Select)、新增(Insert)、修改(Update)、删除(Delete)四种权限,四种权限有多种组合方式,也就是有16中不同的权限状态(2的4次方)。
Permission
一般情况下会想到用四个boolean类型变量来保存:
public class Permission {
// 是否允许查询
private boolean allowSelect;
// 是否允许新增
private boolean allowInsert;
// 是否允许删除
private boolean allowDelete;
// 是否允许更新
private boolean allowUpdate;
// 省略Getter和Setter
}
上面用四个boolean类型变量来保存每种权限状态。
NewPermission
下面是另外一种方式,使用位掩码的话,用一个二进制数即可,每一位来表示一种权限,0表示无权限,1表示有权限。
public class NewPermission {
// 是否允许查询,二进制第1位,0表示否,1表示是
public static final int ALLOW_SELECT = 1 << 0; // 0001
// 是否允许新增,二进制第2位,0表示否,1表示是
public static final int ALLOW_INSERT = 1 << 1; // 0010
// 是否允许修改,二进制第3位,0表示否,1表示是
public static final int ALLOW_UPDATE = 1 << 2; // 0100
// 是否允许删除,二进制第4位,0表示否,1表示是
public static final int ALLOW_DELETE = 1 << 3; // 1000
// 存储目前的权限状态
private int flag;
/**
* 重新设置权限
*/
public void setPermission(int permission) {
flag = permission;
}
/**
* 添加一项或多项权限
*/
public void enable(int permission) {
flag |= permission;
}
/**
* 删除一项或多项权限
*/
public void disable(int permission) {
flag &= ~permission;
}
/**
* 是否拥某些权限
*/
public boolean isAllow(int permission) {
return (flag & permission) == permission;
}
/**
* 是否禁用了某些权限
*/
public boolean isNotAllow(int permission) {
return (flag & permission) == 0;
}
/**
* 是否仅仅拥有某些权限
*/
public boolean isOnlyAllow(int permission) {
return flag == permission;
}
}
以上代码中,用四个常量表示了每个二进制位代码的权限项。
例如:
ALLOW_SELECT = 1 << 0 转成二进制就是0001,二进制第一位表示Select权限。
ALLOW_INSERT = 1 << 1 转成二进制就是0010,二进制第二位表示Insert权限。
private int flag存储了各种权限的启用和停用状态,相当于代替了Permission中的四个boolean类型的变量。
用flag的四个二进制位来表示四种权限的状态,每一位的0和1代表一项权限的启用和停用,下面列举了部分状态表示的权限:
使用位掩码的方式,只需要用一个大于或等于0且小于16的整数即可表示所有的16种权限的状态。
此外,还有很多设置权限和判断权限的方法,需要用到位运算,例如:
public void enable(int permission) {
flag |= permission; // 相当于flag = flag | permission;
}
调用这个方法可以在现有的权限基础上添加一项或多项权限。
添加一项Update权限:
permission.enable(NewPermission.ALLOW_UPDATE);
假设现有权限只有Select,也就是flag是0001。执行以上代码,flag = 0001 | 0100,也就是0101,便拥有了Select和Update两项权限。
添加Insert、Update、Delete三项权限:
permission.enable(NewPermission.ALLOW_INSERT
| NewPermission.ALLOW_UPDATE | NewPermission.ALLOW_DELETE);
NewPermission.ALLOW_INSERT | NewPermission.ALLOW_UPDATE | NewPermission.ALLOW_DELETE运算结果是1110。假设现有权限只有Select,也就是flag是0001。flag = 0001 | 1110,也就是1111,便拥有了这四项权限,相当于添加了三项权限。
上面的设置如果使用最初的Permission类的话,就需要下面三行代码:
permission.setAllowInsert(true);
permission.setAllowUpdate(true);
permission.setAllowDelete(true);
二者对比
设置仅允许Select和Insert权限
Permission
permission.setAllowSelect(true);
permission.setAllowInsert(true);
permission.setAllowUpdate(false);
permission.setAllowDelete(false);
NewPermission
permission.setPermission(NewPermission.ALLOW_SELECT | NewPermission.ALLOW_INSERT);
判断是否允许Select和Insert、Update权限
Permission
if (permission.isAllowSelect() && permission.isAllowInsert() && permission.isAllowUpdate())
NewPermission
if (permission. isAllow (NewPermission.ALLOW_SELECT
| NewPermission.ALLOW_INSERT | NewPermission.ALLOW_UPDATE))
判断是只否允许Select和Insert权限
Permission
if (permission.isAllowSelect() && permission.isAllowInsert()
&& !permission.isAllowUpdate() && !permission.isAllowDelete())
NewPermission
if (permission. isOnlyAllow (NewPermission.ALLOW_SELECT | NewPermission.ALLOW_INSERT))
二者对比可以感受到MyPermission位掩码方式相对于Permission的优势,可以节省很多代码量,位运算是底层运算,效率也非常高,而且理解起来也很简单。
2. a % 2 n = a & (2 n - 1)
举例证明:
假设 n = 3, 2 n - 1 = 7,即0111,2 n = 8
x & (2 n - 1),相当于取x的2进制最后的3位数
x / 8 相当于 x >> 3 ,即把x右移3位,此时x / 8 的商,就是被移掉的后3位,即
x % 8
综上所述, a % 2 n = a & (2 n - 1)
3.Hash
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
Hash算法有直接取余法等。
不管选用何种散列函数,不可避免的都会产生不同Key值对应同一个Hash地址的情况,这种情况叫做哈希冲突。
解决办法:
- 1.开放寻址
- 2.再散列
- 3.链地址法
ConcurrentHashMap在发生Hash冲突时采用了链地址法。
数组的特点是:寻址容易,插入和删除困难;
而链表的特点是:寻址困难,插入和删除容易。
那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是哈希表
4.多线程下HashMap为什么线程不安全?
4.1 put数据丢失
假设A、B线程同时进入addEntry,然后计算出相同的哈希值对应了相同的数组位置,因为此时该位置还没有数据,然后对同一个数组位置调用createEntry,A写入新的头结点,B也写入,那么造成B覆盖A。