题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861
题意:有一个n个点m条边的有向图,把这个图分成几个区域,使得每个区域中的任意两点u, v要么u能到v,要么v能到u,求最少要分成几个区域。
将强连通分量缩点得到有向的树,即求这棵树的最少路径覆盖(点数 – 二分图的最大匹配)
//#include<bits/stdc++.h>
#include <iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<stack>
#include<vector>
#define N 5500
using namespace std;
vector<int> r[N],r1[N];
stack<int> s;
int dfn[N],low[N],belong[N],scnt,cnt,n,m,v[N],linker[N];
void init()
{
for(int i=0;i<=n;i++) r[i].clear(),r1[i].clear();
memset(v,0,sizeof(v));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(belong,0,sizeof(belong));
scnt=cnt=0;
}
void tarjan(int u)
{
int t;
dfn[u]=low[u]=++cnt;
s.push(u);
v[u]=1;
for(int i=0;i<r[u].size();i++)
{
int c=r[u][i];
if(!dfn[c])
{
tarjan(c);
low[u]=min(low[u],low[c]);
}
else if(v[c])
low[u]=min(low[u],dfn[c]);
}
if(dfn[u]==low[u])
{
scnt++;
do
{
t=s.top();
s.pop();
v[t]=0;
belong[t]=scnt;
}while(t!=u);
}
}
int solve()
{
for(int i=1;i<=n;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=n;i++)
{
int x=belong[i];
for(int j=0;j<r[i].size();j++)
{
int y=belong[r[i][j]];
if(x!=y) r1[x].push_back(y);
}
}
}
int dfs(int t)
{
for(int i=0;i<r1[t].size();i++)
{
int c=r1[t][i];
if(!v[c])
{
v[c]=1;
if(linker[c]==-1||dfs(linker[c]))
{
linker[c]=t;
return 1;
}
}
}
return 0;
}
int hungary()
{
memset(linker,-1,sizeof(linker));
int ans=0;
for(int i=1;i<=scnt;i++)
{
memset(v,0,sizeof(v));
if(dfs(i)) ans++;
}
return ans;
}
int main()
{
int T;
cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
init();
for(int i=0;i<m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
r[x].push_back(y);
}
solve();
cout<<scnt-hungary()<<endl;
}
}