折线分割平面
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 17628 Accepted Submission(s): 12147
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2 1 2
Sample Output
2 7解题思路:主要是用到递推即可。递推过程:首先分析直线分平面最多多少份:f(1)=2;f(2)=4;f(3)=7;f(4)=11……可知f(n)=f(n-1)+n且f(1)=2.可知f(n)=(1+n)*n/2+1;同理,可将每个折线看成是两条直线,但是少了一半。因此每一条折线比两条直线分割的面的部分少2。因此n条折线比2n条直线分割平面形成的部分少2n。所以f(n)=2*n^2-n+1,代码是非常简单的。源代码:#include <stdio.h> #include <stdlib.h> int main() { int c,n; scanf("%d",&c); while(c--) { scanf("%d",&n); printf("%d\n",2*n*n-n+1); } system("pause"); return 0; }解题思路二:当第n个折线加入时,已有f(n-1)个平面,有2(n-1)条折线, 第n条折线将与这2(n-1)条折线构成4(n-1)个交点,将使平面多4(n-1)个区域,而第n条折线的顶点将使平面多一个区域 故: f(n)=f(n-1)+4(n-1)+1源代码:#include <stdio.h> #include <stdlib.h> int f[10010]={0,2}; int fac(int n) { if(n==1) return f[1]=2; else return f[n]=fac(n-1)+4*(n-1)+1; } int main() { int c,n; scanf("%d",&c); while(c--) { scanf("%d",&n); fac(n); printf("%d\n",f[n]); } system("pause"); return 0; }