折线分割平面

折线分割平面

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17628 Accepted Submission(s): 12147


Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。


Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。


Sample Input
  
  
2 1 2

Sample Output
  
  
2 7
解题思路:
    
    
主要是用到递推即可。递推过程:首先分析直线分平面最多多少份:
f(1)=2;f(2)=4;f(3)=7;f(4)=11……可知f(n)=f(n-1)+n且f(1)=2.可知f(n)=(1+n)
*n/2+1;同理,可将每个折线看成是两条直线,但是少了一半。因此每一条折线比两
条直线分割的面的部分少2。因此n条折线比2n条直线分割平面形成的部分少2n。
所以f(n)=2*n^2-n+1,代码是非常简单的。
源代码:
#include <stdio.h> #include <stdlib.h> int main() {    int c,n;   scanf("%d",&c);   while(c--)   {     scanf("%d",&n);      printf("%d\n",2*n*n-n+1);            }   system("pause");   return 0;     }
解题思路二:
当第n个折线加入时,已有f(n-1)个平面,有2(n-1)条折线, 第n条折线将与这2(n-1)条折线构成4(n-1)个交点,将使平面多4(n-1)个区域,而第n条折线的顶点将使平面多一个区域 故: f(n)=f(n-1)+4(n-1)+1
源代码:
#include <stdio.h> #include <stdlib.h> int f[10010]={0,2}; int fac(int n) {   if(n==1)     return f[1]=2;    else     return f[n]=fac(n-1)+4*(n-1)+1;     } int main() {    int c,n;   scanf("%d",&c);   while(c--)   {     scanf("%d",&n);      fac(n);     printf("%d\n",f[n]);            }   system("pause");   return 0;     }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值