ZOJ 3656 Bit Magic

图论 专栏收录该内容
10 篇文章 0 订阅

之前发过一篇2-sat模板的文章http://blog.csdn.net/zck921031/article/details/7712359。再看看今天这题,是不是很像哈。

题目链接http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3656

经典的and or xor运算,六种情况全部上了,⊙﹏⊙b汗啊(去长春赛区的同学们,乃们辛苦了)。

 

好了,先来说说这道题目。

Bit Magic,嗯哼?bit,一个int有32bit(废话啦),那和这题什么关系呢?要用数组a[]通过位运算得到矩阵b,似乎很难解~~

不过,如果只考虑a,b的其中一个位,很容易发现,a[i]只有两种取值(0,1), 矩阵b对应的是一系列对a的约束条件。取b[i][j]的某个位,0代表a[i] a[j]对应的操作为假,1代表a[i] a[j]对应的操作为真, 这样是不是可以得到很像下表(poj3678)的一个关系。bingo,2-sat模型。

 

AND

0

1

0

0

0

1

0

1

OR

0

1

0

0

1

1

1

1

XOR

0

1

0

0

1

1

1

0

 

那么,int有32bit怎么办?其实吧,位运算每一位都是相互独立的,我们对每个位做一次2-sat,一共做32次2-sat,只要出现矛盾,直接puts("NO"),否则最后puts("YES"); 对于矩阵b的主对角线的0,我另作了判断,建图是跳过他们,没有关系的。

每次跑强连通子图的时间复杂度是O( (2N)^2 ),跑32次也不是太久,反正时限8s,无所谓啦,抄个强连通分支水过就好。

#include<string.h>
#include<algorithm>
#include <cstdio>
using namespace std;

#define MAXN 1010
int n;
unsigned int b[MAXN][MAXN];
int m[MAXN][MAXN];
int id[MAXN];


int find_components(int n,int mat[][MAXN],int* id){
	int ret=0,a[MAXN],b[MAXN],c[MAXN],d[MAXN],i,j,k,t;
	for (k=0;k<n;id[k++]=0);
	for (k=0;k<n;k++)
		if (!id[k]){
			for (i=0;i<n;i++)
				a[i]=b[i]=c[i]=d[i]=0;
			a[k]=b[k]=1;
			for (t=1;t;)
				for (t=i=0;i<n;i++){
					if (a[i]&&!c[i])
						for (c[i]=t=1,j=0;j<n;j++)
							if (mat[i][j]&&!a[j])
								a[j]=1;
					if (b[i]&&!d[i])
						for (d[i]=t=1,j=0;j<n;j++)
							if (mat[j][i]&&!b[j])
								b[j]=1;
				}
			for (ret++,i=0;i<n;i++)
				if (a[i]&b[i])
					id[i]=ret;
		}
	return ret;
}

void build_map(int k)
{
    memset(m, 0, sizeof(m));
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
            {
                if(i == j) continue;
                if(i % 2 == 1 && j % 2 == 1)
                {
                    if((b[i][j] & (1<<k)) )
                    {
                        m[i][j+n] = 1;
                        m[j][i+n] = 1;
                    }
                    else
                    {
                        m[i+n][i] = 1;
                        m[j+n][j] = 1;
                        m[i][j] = m[j][i] = 1;
                    }
                }
                else if(i % 2 == 0 && j % 2 == 0)
                {
                    if((b[i][j] & (1<<k)) )
                    {
                        m[i][i+n] = 1;
                        m[j][j+n] = 1;
                        m[i+n][j+n] = m[j+n][i+n] = 1;
                    }
                    else
                    {
                        m[j+n][i] = 1;
                        m[i+n][j] = 1;
                    }
                }
                else
                {
                    if((b[i][j] & (1<<k)) )
                    {
                        m[i][j+n] = m[j+n][i] = 1;
                        m[j][i+n] = m[i+n][j] = 1;
                    }
                    else
                    {
                        m[i][j] = m[j][i] = 1;
                        m[i+n][j+n] = m[j+n][i+n] = 1;
                    }
                }
            }
}


void solve()
{
    for(int k = 0; k < 32; k++)
    {
        build_map(k);
        memset(id, 0, sizeof(id));
        find_components(2*n, m, id);

/*
        printf("%d\n",k);
        for (int i=0; i<n; i++,puts(""))
            for (int j=0; j<n; j++)
            {
                printf("%d ",b[i][j]&(1<<k));
            }
        for(int i = 0; i < n; i++)
        {
            printf("id[%d] = %d, id[%d] = %d\n", i, id[i], i+n, id[i+n]);
        }
*/
        for(int i = 0; i < n; i++)
            if(id[i] == id[i+n])
            {
                printf("NO\n");
                return;
            }
    }

    printf("YES\n");
}

int main()
{
	while(scanf("%d",&n) != EOF)
    {
	    int i, j;
	    memset(id, 0, sizeof(id));
	    memset(b, 0, sizeof(b));

        for(i = 0; i < n; i++)
            for(j = 0; j < n; j++)
                scanf("%d",&b[i][j]);

        bool flag = true;
        for(i = 0; i < n; i++)
            if(b[i][i]) { flag = false; break; }

        if(flag == false)
        {
            printf("NO\n");
            continue;
        }
        solve();
    }
	return 0;
}


 

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

zck921031

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值