Pytorch实现softmax多分类

一、Softmax函数介绍

Softmax函数是一种将实数向量映射为概率分布的函数,常用于多分类问题的输出层。它将输入向量的每个元素转换为0到1之间的概率值,且所有输出之和为1。

softmax函数的特点:
【1】归一化:输出值的总和为1,符合概率分布的性质。

【2】单调性:输入值越大,对应的输出概率越高。

【3】可导性:便于梯度下降等优化算法的应用(如反向传播)。

【4】对输入敏感:会放大较大输入值的相对概率(指数效应)。


softmax函数应用场景:

【1】多分类神经网络:

如CNN、MLP的输出层,将原始得分(logits)转化为类别概率(如手写数字识别、图像分类)。

【2】交叉熵损失函数:

与Softmax结合,计算预测概率与真实标签的差异。

【3】注意力机制:

在Transformer中,Softmax用于计算注意力权重(如自注意力中的QK^T缩放后)。

【4】概率生成模型:

如条件随机场(CRF)中的状态转移概率。

二、Softmax多分类案例:鸢尾花分类

我们使用经典的 鸢尾花(Iris)数据集,该数据集包含3类鸢尾花(Setosa、Versicolor、Virginica),每类有4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)。目标是根据输入特征预测花的类别。其样本数据如下所示:
 

实现步骤:

【1】数据准备:加载Iris数据集,划分训练集和测试集。

【2】模型定义:构建一个简单的全连接神经网络(输入层→输出层,无隐藏层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字化与智能化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值