一、多层感知机介绍
多层感知机(MLP)是一种前馈人工神经网络(Feedforward ANN),由至少一个输入层、一个或多个隐藏层和一个输出层组成,其中每个层由多个神经元(节点)构成,并通过非线性激活函数实现复杂的函数逼近能力。
结构特点:
【1】输入层:
接收数据(如特征向量),节点数等于输入维度。
【2】隐藏层:
至少1层,节点数需手动设定(如64、128),使用非线性激活函数(如ReLU)。
【3】输出层:
节点数和激活函数由任务决定(如二分类用1节点+Sigmoid,回归用线性激活)。
【4】全连接性:
每一层的每个神经元与下一层的所有神经元连接,参数数量为 (前层节点数 × 后层节点数) + 偏置。
【5】非线性激活函数:
如ReLU、Sigmoid、Tanh,使网络能够拟合非线性映射(无激活函数时MLP退化为线性模型)。
二、多层感知机的数学表达式
【1】隐藏层计算
【2】输出层计算
详细说明:
三、多层感知机分类
1. 案例描述
任务:使用MLP对二维平面上的点进行分类,生成一个非线性可分的二分类数据集(如螺旋数据集或月亮形数据集),并训练模型完成分类。
2. 数据生成
使用 sklearn.datasets 生成 月亮形数据集(Moons),包含两个半圆形分布的类别,添加高斯噪声以增加复杂度
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# 生成数据
X, y = make_moons(n_samples=200, noise=0.1, random_state=42)
# 可视化
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
plt.title("Moons Dataset (Nonlinearly Separable)")
plt.show()