PyTorch实现多层感知机

一、多层感知机介绍

多层感知机(MLP)是一种前馈人工神经网络(Feedforward ANN),由至少一个输入层、一个或多个隐藏层和一个输出层组成,其中每个层由多个神经元(节点)构成,并通过非线性激活函数实现复杂的函数逼近能力。

结构特点:

【1】输入层:
 接收数据(如特征向量),节点数等于输入维度。

【2】隐藏层:
 至少1层,节点数需手动设定(如64、128),使用非线性激活函数(如ReLU)。

【3】输出层:
 节点数和激活函数由任务决定(如二分类用1节点+Sigmoid,回归用线性激活)。

【4】全连接性:
 每一层的每个神经元与下一层的所有神经元连接,参数数量为 (前层节点数 × 后层节点数) + 偏置。

【5】非线性激活函数:
 如ReLU、Sigmoid、Tanh,使网络能够拟合非线性映射(无激活函数时MLP退化为线性模型)。


二、多层感知机的数学表达式

【1】隐藏层计算

【2】输出层计算

详细说明:

三、多层感知机分类

1. 案例描述

任务:使用MLP对二维平面上的点进行分类,生成一个非线性可分的二分类数据集(如螺旋数据集或月亮形数据集),并训练模型完成分类。

2. 数据生成

使用 sklearn.datasets 生成 月亮形数据集(Moons),包含两个半圆形分布的类别,添加高斯噪声以增加复杂度

from sklearn.datasets import make_moons
import matplotlib.pyplot as plt

# 生成数据
X, y = make_moons(n_samples=200, noise=0.1, random_state=42)

# 可视化
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
plt.title("Moons Dataset (Nonlinearly Separable)")
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字化与智能化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值