对于一个序列a1,a2,a3,….an,我们可以计算出一个符号矩阵S,就是上面右图矩阵,其中S(i,j)表示 ai+…+aj的正负号,给出序列不难求出矩阵,我们的任务是求出“逆问题”,即给出矩阵,求出序列,序列每个值大于-10小于10;s[i][j]数组表示表示第i项到第j项的和,如果是“+”则sum[j]-sum[i-1]>0,从j指向i-1,否则当sum[i-1]-sum[j]>0,从i-1指向j
#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
bool vis[205];
int head[205],degree[205];
int cnt,num,n,t;
int a[205],sum[205];
string s;//第一次用string
struct edgenode
{
int to,next;
} edge[205];
void init()
{
cnt=0;
memset(vis,false,sizeof(vis));
memset(head,-1,sizeof(head));
memset(degree,0,sizeof(degree));
for(int i=0;i<=n;i++)
sum[i]=10;//因为数不超过10,所以最大就是10
}
void add(int u,int v)
{
degree[v]++;
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void topu(int n)//拓扑排序模板
{
queue<int>q;
num=0;
for(int i=0;i<=n;i++)//这里要从0开始,增加了一个点0,也要进队列·,因为这里我们会要用到sum[0],否则如果
// 0不进队列的话,没法算出sum[0]的值
{
if(!degree[i]&&!vis[i])
{
q.push(i);
vis[i]=1;
}
}
while(!q.empty())
{
int u=q.front();
q.pop();
for(int k=head[u];k!=-1;k=edge[k].next)
{
degree[edge[k].to]--;
sum[edge[k].to]=sum[u]-1;
if(!degree[edge[k].to])
{
q.push(edge[k].to);
vis[edge[k].to]=1;
}
}
}
}
int main()
{
cin>>t;
while(t--)
{
init();
memset(a,0,sizeof(a));
cin>>n;
cin>>s;
int k=0;
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
{
if(s[k]=='+')
add(j,i-1);
else if(s[k]=='-')
add(i-1,j);
k++;
}
topu(n);
for(int i=1;i<=n;i++)
a[i]=sum[i]-sum[i-1];
for(int i=1;i<n;i++)
cout<<a[i]<<" ";
cout<<a[n]<<endl;
}
return 0;
}