YBTOJ 区间dp合集

qwq

石子合并

区间dp模板略。

木板涂色

区间dp,特判 s [ l ] = s [ r ] s[l]=s[r] s[l]=s[r] 的时候,可以在染一边颜色的时候顺便染另一边,即 f [ i ] [ j ] = m i n ( f [ i ] [ j − 1 ] , f [ i + 1 ] [ j ] ) f[i][j]=min(f[i][j-1],f[i+1][j]) f[i][j]=min(f[i][j1],f[i+1][j])

一般情况就是像普通的区间dp那样,枚举每个断点,将整个区间染色所用的次数即将两边染色用的次数之和。

    ff(i,1,n) f[i][i]=1;
    ff(len,2,n) ff(i,1,n-len+1){
        int j=i+len-1;
        f[i][j]=1e9;
        if(s[i]==s[j]) f[i][j]=min(f[i][j],min(f[i][j-1],f[i+1][j]));
        ff(k,i,j-1) f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
    }

消除木块

写了个平平无奇的区间dp爆零了,看数据发现没算合并三个及以上相同颜色块的情况/kk

要解决这个问题,就要同时考虑到当前颜色块 i i i 前后和它颜色相同的颜色块,然后就不会做了

i i i 之前和它颜色相同的颜色块很好处理,而之后的颜色块还没有遍历到,不妨在原dp数组上加一维 k k k 表示这是后面有长度为k的相同颜色块时的答案(好巧妙qwq

那么对区间 [ l , r ] [l,r] [l,r],考虑消除第 r r r 个颜色块有两种方案:直接消除或和前面一段合并消除,就能得到dp转移式(懒得敲就放代码吧:

 inline int dp(int l,int r,int k){
    if(f[l][r][k]) return f[l][r][k];
    if(l>r) return 0;
    f[l][r][k]=dp(l,r-1,0)+(siz[r]+k)*(siz[r]+k);//直接消除
    ff(i,l,r-1){//枚举和前面的哪一段合并消除
        if(col[i]!=col[r]) continue;
        f[l][r][k]=max(f[l][r][k],dp(l,i,siz[r]+k)+dp(i+1,r-1,0));
    }
    return f[l][r][k];
}

棋盘分割

二维区间dp,设 f [ i ] [ x 1 ] [ y 1 ] [ x 2 ] [ y 2 ] f[i][x1][y1][x2][y2] f[i][x1][y1][x2][y2] 为把以 ( x 1 , y 1 ) (x1,y1) (x1,y1) 为左上角, ( x 2 , y 2 ) (x2,y2) (x2,y2) 为右下角的矩形分割i次得到的最小值,根据题意,第i次分割只能沿着 x ∈ [ x 1 , x 2 − 1 ] x\in [x1,x2-1] x[x1,x21] y ∈ [ y 1 , y 2 − 1 ] y\in [y1,y2-1] y[y1,y21] 切,沿直线 x x x 切的时候又分为两种可能:选取上半部分和选取下半部分,沿直线 y y y 切同理。枚举每种可能,取最小答案即可。

维护一个二维前缀和,时间复杂度 O ( n × 8 5 ) O(n\times 8^5) O(n×85)

#include<cstdio>
#include<iostream>
#include<cmath>
#define ll long long
#define y1 yy
#define y2 yyyy
#define ff(i,s,e) for(int i(s);i<=(e);++i)
using namespace std;
inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
    return x*f;
}
const int N=10;
int n,a[N][N],sum[N][N];
double f[20][N][N][N][N],ave;
inline double qwq(int x1,int y1,int x2,int y2){
    double x=(sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1])-ave;
    return x*x/n;
}
signed main(){
    n=read();
    ff(i,1,8) ff(j,1,8) a[i][j]=read();
    ff(i,1,8) ff(j,1,8) sum[i][j]=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1]+a[i][j];
    ave=sum[8][8]*1.0/n;
    ff(x1,1,8) ff(y1,1,8) ff(x2,1,8) ff(y2,1,8){
        f[1][x1][y1][x2][y2]=qwq(x1,y1,x2,y2);
    }
    ff(i,2,n) ff(x1,1,8) ff(y1,1,8) ff(x2,x1,8) ff(y2,y1,8){
        double res=1e9;
        ff(y,y1,y2-1) res=min(res,min(f[i-1][x1][y1][x2][y]+qwq(x1,y+1,x2,y2),f[i-1][x1][y+1][x2][y2]+qwq(x1,y1,x2,y)));
        ff(x,x1,x2-1) res=min(res,min(f[i-1][x1][y1][x][y2]+qwq(x+1,y1,x2,y2),f[i-1][x+1][y1][x2][y2]+qwq(x1,y1,x,y2)));
        f[i][x1][y1][x2][y2]=res;
    }
    printf("%.3lf",sqrt(f[n][1][1][8][8]));
    return 0;
}

写的时候犯了一个脑瘫错误啊啊啊啊,把转移方程式写成了这样:

ff(y,y1,y2-1) res=min(res,min(f[i-1][x1][y1][x2][y]+qwq(x1,y+1,x2,y2),f[i-1][x1][y][x2][y2]+qwq(x1,y1,x2,y+1)));
ff(x,x1,x2-1) res=min(res,min(f[i-1][x1][y1][x][y2]+qwq(x+1,y1,x2,y2),f[i-1][x][y1][x2][y2]+qwq(x1,y1,x+1,y2)));

加一位置变了, min ⁡ \min min 判断的两边变成了两种切割方法,而不是一种切割的两种选取方式,然后 100 − > 30 100->30 100>30 /kel

删数问题

模板,删除区间 [ l , r ] [l,r] [l,r]有两种选择:一次性全删和分别删除区间 [ l , k ] [l,k] [l,k] [ k + 1 ] [ r ] [k+1][r] [k+1][r],区间dp求最大值即可。

恐狼后卫

考虑消去区间 [ l , r ] [l,r] [l,r],必定有 k ∈ [ l , r ] k\in [l,r] k[l,r] 是最后一个被消去的,此时 [ l , r ] [l,r] [l,r] k k k 分成互不影响的左右两区间,那么这次攻击对于答案的贡献就是左区间的贡献+右区间的贡献+ k k k 的贡献,而与 k k k 相邻的必然是 l − 1 l-1 l1 r + 1 r+1 r+1,则只需知道消去 k k k 所用的时间就可以求解。预处理数组 t t t 表示消去每一只狼所用时间,区间dp时枚举每一个最后被消去的 k k k 即可求最小答案。

由于第 i i i 只狼本身的攻击对答案的贡献是定值 a i × t i a_i \times t_i ai×ti,所以为了简化区间dp可以最后再累计这部分答案。

#include<bits/stdc++.h>
#define ll long long
#define ff(i,s,e) for(int i(s);i<=(e);++i)
using namespace std;
inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
    return x*f;
}
const int N=405;
int n,atk,a[N],b[N],h[N],t[N];
int f[N][N];
signed main(){
    n=read(),atk=read();
    ff(i,1,n) a[i]=read(),b[i]=read(),h[i]=read();
    ff(i,1,n) t[i]=(h[i]%atk)?h[i]/atk+1:h[i]/atk;
    ff(i,1,n) f[i][i]=(b[i-1]+b[i+1])*t[i];
    ff(len,2,n) ff(i,1,n-len+1){
        int j=i+len-1,sum=b[i-1]+b[j+1];
        f[i][j]=min(f[i][j-1]+t[j]*sum,f[i+1][j]+t[i]*sum);
        ff(k,i+1,j-1) f[i][j]=min(f[i][j],f[i][k-1]+f[k+1][j]+t[k]*sum);
    }
    int ans=f[1][n];
    ff(i,1,n) ans+=a[i]*t[i];
    printf("%d",ans);
    return 0;
}

矩阵取数

n n n 行拆开考虑,设 f [ i ] [ j ] f[i][j] f[i][j] 为从前往后取了 i i i 个,从后往前取了 j j j 个得到的最大得分,那么 f [ i ] [ j ] f[i][j] f[i][j] 只能由 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j] f [ i ] [ j − 1 ] f[i][j-1] f[i][j1] 转移到,根据题意dp转移式就很好写了,只需要注意特殊处理 i = 0 i=0 i=0 j = 0 j=0 j=0 的情况,防止数组越界。

很ex的是 m m m 最多为 80 80 80,在不使用__int 128这种奇技淫巧的情况下需要高精,但是本人由于不是很会用重载运算符等原因 把代码写的很丑,这里就不放了qwq

#include<bits/stdc++.h>
#define int unsigned long long
#define ff(i,s,e) for(int i(s);i<=(e);++i)
using namespace std;
inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
    return x*f;
}
const int N=85;
int n,m,a[N],f[N][N];
signed main(){
    n=read(),m=read();
    int ans=0;
    ff(o,1,n){
        ff(i,1,m) a[i]=read();
        memset(f,0,sizeof(f));
        ff(i,1,m) f[0][i]=f[0][i-1]+a[m-i+1]*(1<<i);
        ff(i,1,m) f[i][0]=f[i-1][0]+a[i]*(1<<i);
        ff(l,1,m) ff(r,1,m){
            if(l+r>m) continue;
            f[l][r]=max(f[l-1][r]+a[l]*(1<<l+r),f[l][r-1]+a[m-r+1]*(1<<l+r));
        }
        int maxx=0;
        ff(i,0,m) maxx=max(maxx,f[i][m-i]);
        ans+=maxx;
    }
    printf("%llu",ans);
    return 0;
}

生日欢唱

常规思路:设 f [ i ] [ j ] f[i][j] f[i][j] 表示当前选到第 i i i 个男生第 j j j 个女生,所能得到的最大愉悦值,然后……做不出来了。

正解换了一种巧妙的做法:设 f [ i ] [ j ] f[i][j] f[i][j] 表示当前选到第 i i i 个男生第 j j j 个女生,且第i个男生和第j个女生必须配对,所能达到的最大愉悦值。

观察数据范围,由于 a i a_i ai b i b_i bi 都不小于0,所以一定不存在 i i i 前不选一段男生且 j j j 前不选一段女生的情况,因为只要在这两段不选的人中任意进行男女配对,得到的最大愉悦度一定不会更小。

所以在求 f [ i ] [ j ] f[i][j] f[i][j] 的时候,只有三种转移情况:第 i − 1 i-1 i1 个男生和第 j − 1 j-1 j1 个女生恰好配对、第 i i i 个男生前面不选一段,第 j j j 个女生前面不选一段。枚举不选的那段的长度,就可以 O ( n 3 ) O(n^3) O(n3) 求解。

由于最优解不一定必须选第 n n n 个男生和第 n n n 个女生配对,所以不能直接用 f [ n ] [ n ] f[n][n] f[n][n] 作为答案。考虑加入第 n + 1 n+1 n+1 个男生和第 n + 1 n+1 n+1 个女生,使 a n + 1 = b n + 1 = 0 a_{n+1}=b_{n+1}=0 an+1=bn+1=0,所求 f [ n + 1 ] [ n + 1 ] f[n+1][n+1] f[n+1][n+1] 即为答案。

初始化:对于 i ≠ 0 i\ne0 i=0 f [ i ] [ 0 ] f[i][0] f[i][0] f [ 0 ] [ i ] f[0][i] f[0][i] 都是不合法的,所以要初始化为 − i n f -inf inf

#include<bits/stdc++.h>
#define int long long
#define ff(i,s,e) for(int i=s;i<=(e);++i)
using namespace std;
inline int read(){
	int x=0,f=1;
	char ch=getchar();
	while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
	return x*f;
}
const int N=305;
int n,a[N],b[N],f[N][N],suma[N],sumb[N];
inline int qwq(int x){return x*x;}
signed main(){
	n=read();
	ff(i,1,n) a[i]=read();
	ff(i,1,n) b[i]=read();
	ff(i,1,n) suma[i]=suma[i-1]+a[i],sumb[i]=sumb[i-1]+b[i];
	ff(i,1,n) f[i][0]=f[0][i]=-1e17;
	ff(i,1,n+1) ff(j,1,n+1){
		f[i][j]=f[i-1][j-1]+a[i]*b[j];
		ff(k,0,j-2) f[i][j]=max(f[i][j],f[i-1][k]+a[i]*b[j]-qwq(sumb[j-1]-sumb[k]));
		ff(k,0,i-2) f[i][j]=max(f[i][j],f[k][j-1]+a[i]*b[j]-qwq(suma[i-1]-suma[k]));
	}
	printf("%lld",f[n+1][n+1]);
	return 0;
}

最小代价

f [ l ] [ r ] [ i ] [ j ] f[l][r][i][j] f[l][r][i][j] 表示区间 [ l , r ] [l,r] [l,r] 内未消掉的最小值是 i i i,最大值是 j j j 所需要的最小代价, g [ l ] [ r ] g[l][r] g[l][r] 表示区间 [ l , r ] [l,r] [l,r] 全部被消掉所需要的最小代价,那么枚举 l , r , i , j l,r,i,j l,r,i,j 以及分割点 k k k,则有三种情况:

  • 未消去的全在左半区间;
  • 未消去的全在右半区间;
  • 未消去的左右区间都有。

分别dp转移即可。

所以为什么为什么 O ( n 5 ) O(n^5) O(n5) 3 e 8 3e8 3e8能跑过1s时限啊

#include<bits/stdc++.h>
#define ll long long
#define ff(i,s,e) for(int i=s;i<=(e);++i)
using namespace std;
inline int read(){
	int x=0,f=1;
	char ch=getchar();
	while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
	return x*f;
}
const int N=52;
int n,a,b;
int x[N],y[N];
int f[N][N][N][N],g[N][N];
inline int qwq(int x){return x*x;}
signed main(){
	n=read(),a=read(),b=read();
	ff(i,1,n) x[i]=y[i]=read();
	sort(x+1,x+n+1);
	int m=unique(x+1,x+n+1)-x-1;
	ff(i,1,n) y[i]=lower_bound(x+1,x+m+1,y[i])-x;
//	ff(i,1,n) cout<<y[i]<<' ';cout<<endl;
	memset(f,0x3f3f3f3f,sizeof(f));
	memset(g,0x3f3f3f3f,sizeof(g));
	ff(i,1,n){
		g[i][i]=a;
		ff(j,1,y[i]) ff(k,y[i],m) f[i][i][j][k]=0;
	}
	ff(len,2,n) ff(l,1,n-len+1){
		int r=l+len-1;
		ff(i,1,m) ff(j,i,m) ff(k,l,r){
			int &res=f[l][r][i][j];
			res=min(res,g[l][k]+f[k+1][r][i][j]);
			res=min(res,g[k+1][r]+f[l][k][i][j]);
			res=min(res,f[l][k][i][j]+f[k+1][r][i][j]); 
			g[l][r]=min(g[l][r],res+a+b*qwq(x[j]-x[i]));
		}
	}
	printf("%d",g[1][n]);
	return 0;
}
  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值