数学基础整理

数学基础漏的像筛子/hsh

线性求逆元

  • i n v i = ( p − p i ) × i n v p   m o d   i inv_i=(p-\dfrac{p}{i})\times inv_{p\bmod i} invi=(pip)×invpmodi

卡特兰数

  • 组合数公式: H n = C 2 n n − C 2 n n − 1 H_n=C_{2n}^n-C_{2n}^{n-1} Hn=C2nnC2nn1

  • 递推式: H n = H n − 1 ( 4 n − 2 ) n + 1 H_n=\dfrac{H_{n-1}(4n-2)}{n+1} Hn=n+1Hn1(4n2)

欧拉函数

  • n = ∑ d ∣ n φ ( d ) n=\sum\limits_{d\mid n} \varphi(d) n=dnφ(d)

  • ∑ d ∣ n μ ( d ) n d = φ ( n ) \sum\limits_{d\mid n}\mu(d)\dfrac{n}{d}=\varphi(n) dnμ(d)dn=φ(n)

  • 欧拉定理: gcd ⁡ ( a , m ) = 1 , a φ ( m ) ≡ 1 ( m o d m ) \gcd(a,m)=1,a^{\varphi(m)}\equiv1\pmod m gcd(a,m)=1,aφ(m)1(modm)

  • 拓展欧拉定理: a b ≡ { a b   m o d   φ ( m ) gcd ⁡ ( a , m ) = 1 a b gcd ⁡ ( a , m ) ≠ 1 ∧ b < φ ( m ) a b   m o d   φ ( m ) + φ ( m ) gcd ⁡ ( a , m ) ≠ 1 ∧ b ≥ φ ( m ) a^b\equiv\begin{cases}a^{b\bmod \varphi(m)}\quad \gcd(a,m)=1\\ a^b\quad \gcd(a,m)\ne 1\land b<\varphi(m)\\ a^{b\bmod \varphi(m)+\varphi(m)}\quad \gcd(a,m)\ne 1\land b\ge \varphi(m)\end{cases} ab abmodφ(m)gcd(a,m)=1abgcd(a,m)=1b<φ(m)abmodφ(m)+φ(m)gcd(a,m)=1bφ(m) ( m o d m ) \pmod m (modm)

数论分块

  • 满足 ⌊ n i ⌋ = ⌊ n x ⌋ \left\lfloor\dfrac{n}{i}\right\rfloor=\left\lfloor\dfrac{n}{x}\right\rfloor in=xn 的最大 x x x 等于 ⌊ n ⌊ n i ⌋ ⌋ \left\lfloor\dfrac{n}{\left\lfloor\frac{n}{i}\right\rfloor}\right\rfloor inn

莫比乌斯变换

  • 两个数论函数 f ( n ) , g ( n ) f(n),g(n) f(n),g(n),若 f ( n ) = ∑ d ∣ n g ( d ) f(n)=\sum\limits_{d\mid n} g(d) f(n)=dng(d),则 g ( n ) = ∑ d ∣ n f ( d ) μ ( n d ) g(n)=\sum\limits_{d\mid n} f(d)\mu(\dfrac{n}{d}) g(n)=dnf(d)μ(dn)

使得 a n ≡ 1 ( m o d m ) a^n\equiv1\pmod{m} an1(modm) 成立的最小正整数 n n n 叫做 a a a m m m 的阶,符号 δ m ( a ) \delta_m(a) δm(a)

一些性质:

  • ∀ a n ≡ 1 ( m o d m ) , δ m ( a ) ∣ n    ⟹    δ m ( a ) ∣ ϕ ( m ) \forall a^n\equiv 1\pmod{m},\delta_m(a)\mid n\implies\delta_m(a)\mid\phi(m) an1(modm),δm(a)nδm(a)ϕ(m)
  • ∀ i , j ∈ [ 1 , δ m ( a ) ] , i ≠ j   a i ≢ a j ( m o d m ) \forall_{i,j\in[1,\delta_m(a)],i\ne j}\ a^i\not\equiv a^j\pmod{m} i,j[1,δm(a)],i=j aiaj(modm)
  • gcd ⁡ ( a , m ) = 1 , δ m ( a k ) = δ m ( a ) gcd ⁡ ( k , δ m ( a ) ) \gcd(a,m)=1,\delta_m(a^k)=\dfrac{\delta_m(a)}{\gcd(k,\delta_m(a))} gcd(a,m)=1,δm(ak)=gcd(k,δm(a))δm(a)

原根

gcd ⁡ ( a , m ) = 1 , δ m ( a ) = ϕ ( m ) \gcd(a,m)=1,\delta_m(a)=\phi(m) gcd(a,m)=1,δm(a)=ϕ(m),则 a a a m m m 的原根。

  • 判定定理: ∀ p ∣ ϕ ( m ) a ϕ ( m ) p ≢ 1 ( m o d m )    ⟺    a \forall_{p\mid \phi(m)} a^{\frac{\phi(m)}{p}}\not\equiv1\pmod{m}\iff a pϕ(m)apϕ(m)1(modm)a m m m 的原根;
  • 存在定理:只有 2 , 4 , p a , 2 p a 2,4,p^a,2p^a 2,4,pa,2pa 才存在原根,其中 p p p 为奇素数;
  • 原根个数:若 m m m 有原根,则其原根个数为 ϕ ( ϕ ( m ) ) \phi(\phi(m)) ϕ(ϕ(m))
  • m m m 的最小原根 g g g 不超过 m 1 4 m^{\frac{1}{4}} m41,所有其它原根均为 g k   ( gcd ⁡ ( k , ϕ ( m ) = 1 ) ) g^k\ (\gcd(k,\phi(m)=1)) gk (gcd(k,ϕ(m)=1))

神秘组合数公式

  • 二项式定理: ( x + y ) n = ∑ i = 0 n C n i x i y n − i ⇒ ( x + 1 ) n = ∑ i = 0 n C n i x i (x+y)^n=\sum\limits_{i=0}^n C_n^i x^i y^{n-i}\Rightarrow (x+1)^n=\sum\limits_{i=0}^n C_n^i x_i (x+y)n=i=0nCnixiyni(x+1)n=i=0nCnixi
  • 范德蒙德卷积: ∑ i = 0 k C n i C m k − i = C n + m k \sum\limits_{i=0}^k C_n^i C_m^{k-i}=C_{n+m}^k i=0kCniCmki=Cn+mk
  • ∑ m = 0 n C m k = C n + 1 k + 1 \sum\limits_{m=0}^n C_m^k=C_{n+1}^{k+1} m=0nCmk=Cn+1k+1
  • 上指标翻转: C n m = n m ‾ m ! = ( − 1 ) m ∏ i = − n m − n − 1 i m ! = ( − 1 ) m ( m − n − 1 ) m ‾ m ! = ( − 1 ) m C m − n − 1 m C_n^m=\dfrac{n^{\underline m}}{m!}=(-1)^m\dfrac{\prod\limits_{i=-n}^{m-n-1} i}{m!}=(-1)^m\dfrac{(m-n-1)^{\underline m}}{m!}=(-1)^mC_{m-n-1}^m Cnm=m!nm=(1)mm!i=nmn1i=(1)mm!(mn1)m=(1)mCmn1m

生成函数

  • F ( x ) = ∑ n ≥ 0 C n + m n x n F(x)=\sum\limits_{n\ge 0} C_{n+m}^n x^n F(x)=n0Cn+mnxn
       = ∑ n ≥ 0 ( − 1 ) n C − m − 1 n x n \quad\quad\ \ =\sum\limits_{n\ge 0}(-1)^nC_{-m-1}^n x^n   =n0(1)nCm1nxn(上指标翻转)
       = ∑ n ≥ 0 ( − x ) n C − m − 1 n \quad\quad\ \ =\sum\limits_{n\ge 0}(-x)^nC_{-m-1}^n   =n0(x)nCm1n
       = ( − x + 1 ) − m − 1 \quad\quad\ \ =(-x+1)^{-m-1}   =(x+1)m1(广义二项式定理)
       = 1 ( − x + 1 ) m + 1 \quad\quad\ \ =\dfrac{1}{(-x+1)^{m+1}}   =(x+1)m+11

期望概率

  • n n n [ 0 , 1 ] [0,1] [0,1] 之间的随机变量,第 k k k 小值的期望是 k n + 1 \dfrac{k}{n+1} n+1k

    证明:引入第 n + 1 n+1 n+1 个随机变量,按大小关系排列的取值有 ( n + 1 ) ! (n+1)! (n+1)! 种,第 n + 1 n+1 n+1 个变量小于等于 k k k 小值的方案数有 k × n ! k\times n! k×n! 种,概率为 k n + 1 \dfrac{k}{n+1} n+1k,即 k k k 小值的期望为 k n + 1 \dfrac{k}{n+1} n+1k

导数

  • lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim\limits_{x\to 0}(1+x)^{\frac{1}{x}}=e x0lim(1+x)x1=e

  • f ( x ) = x n , f ′ ( x ) = n x n − 1 f(x)=x^n,f^\prime(x)=nx^{n-1} f(x)=xn,f(x)=nxn1

  • f ( x ) = a x , f ′ ( x ) = a x ln ⁡ a f(x)=a^x,f^\prime(x)=a^x\ln a f(x)=ax,f(x)=axlna证明

  • f ( x ) = log ⁡ a x , f ′ ( x ) = 1 x ln ⁡ a f(x)=\log_ax,f^\prime(x)=\dfrac{1}{x\ln a} f(x)=logax,f(x)=xlna1证明

拜谢 Cx330 指出我的柿子多了个 Δ \Delta Δ

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
在Unity开发中,数学基础是非常重要的。在游戏开发的过程中,经常会涉及到各种数学知识,比如矩阵变换、向量运算、几何计算等。了解这些数学基础可以帮助开发者更好地理解和操作三维场景中的模型。 在Unity中,矩阵变换是非常常见的操作。通过矩阵变换,可以实现物体的平移、旋转和缩放等变换效果。矩阵变换的原理是使用矩阵与向量相乘的方式来实现物体的变换。 此外,灯光法线位置变换也是游戏开发中常用的数学基础之一。通过对灯光的位置和法线进行变换,可以实现不同的光照效果,如阴影和反射等。 视点矩阵变换在Unity中也非常重要。通过视点矩阵变换,可以实现摄像机的移动和旋转效果,以及视角的变换。这对于实现玩家视角的控制和相机跟随功能至关重要。 综上所述,了解3D数学基础对于Unity开发来说非常重要。它能够帮助开发者更好地理解和使用矩阵变换、灯光法线位置变换、视点矩阵变换等数学知识,从而更好地操作三维场景中的模型。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [[3D数学基础:图形与游戏开发] unity](https://download.csdn.net/download/qq_18294505/85928665)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [3D数学基础:Unity游戏开发.pptx](https://download.csdn.net/download/tocrack212/11180282)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Unity 3D 开发中需要掌握的数学基础知识概要整理(一)](https://blog.csdn.net/u014361280/article/details/102783979)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值