零基础入门NLP-TASK3基于机器学习的文本分类

在处理自然语言问题时,需要将文字处理为计算机可以理解的语言,由于文本长度不定,因此需要进行词嵌入(Word Embedding)。词嵌入将不定长的文本转换到定长的空间内,是文本分类的第一步。常见词嵌入方法:

one-hot

这里的One-hot与数据挖掘任务中的操作是一致的,即将每一个单词使用一个离散的向量表示。具体将每个字/词编码一个索引,然后根据索引进行赋值。
One-hot表示方法的例子如下:
句子1:我 爱 北 京 天 安 门
句子2:我 喜 欢 上 海
首先对所有句子的字进行索引,即将每个字确定一个编号:

{
‘我’: 1, ‘爱’: 2, ‘北’: 3, ‘京’: 4, ‘天’: 5,
‘安’: 6, ‘门’: 7, ‘喜’: 8, ‘欢’: 9, ‘上’: 10, ‘海’: 11
}
在这里共包括11个字,因此每个字可以转换为一个11维度稀疏向量:

我:[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
爱:[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

海:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

Bag of Words
Bag of Words(词袋表示),也称为Count Vectors,每个文档的字/词可以使用其出现次数来进行表示。

句子1:我 爱 北 京 天 安 门
句子2:我 喜 欢 上 海
直接统计每个字出现的次数,并进行赋值:

句子1:我 爱 北 京 天 安 门
转换为 [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

句子2:我 喜 欢 上 海
转换为 [1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
在sklearn中可以直接CountVectorizer来实现这一步骤:

from sklearn.feature_extraction.text import CountVectorizer
corpus = [
    'This is the first document.',
    'This document is the second document.',
    'And this is the third one.',
    'Is this the first document?',
]
vectorizer = CountVectorizer()
vectorizer.fit_transform(corpus).toarray()
vectorizer.vocabulary_

在这里插入图片描述

N-gram

N-gram与Count Vectors类似,不过加入了相邻单词组合成为新的单词,并进行计数。

如果N取值为2,则句子1和句子2就变为:

句子1:我爱 爱北 北京 京天 天安 安门
句子2:我喜 喜欢 欢上 上海

TF-IDF

TF-IDF 分数由两部分组成:第一部分是词语频率(Term Frequency),第二部分是逆文档频率(Inverse Document Frequency)。其中计算语料库中文档总数除以含有该词语的文档数量,然后再取对数就是逆文档频率。

TF(t)= 该词语在当前文档出现的次数 / 当前文档中词语的总数
IDF(t)= log_e(文档总数 / 出现该词语的文档总数)

Count Vectors + RidgeClassifier

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import f1_score

train_df = pd.read_csv('../input/train_set.csv', sep='\t', nrows=15000)

vectorizer = CountVectorizer(max_features=3000)
train_test = vectorizer.fit_transform(train_df['text'])

clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))
#0.74

TF-IDF + RidgeClassifier

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import f1_score

train_df = pd.read_csv('../input/train_set.csv', sep='\t', nrows=15000)

tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=3000)
train_test = tfidf.fit_transform(train_df['text'])

clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))
#0.87

参考:https://blog.csdn.net/weixin_46073069/article/details/107577103

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页