爬楼梯问题,最小路径等一维DP问题分析

本文深入分析了一维动态规划问题,以爬楼梯问题和寻找最小路径为例,阐述了动态规划的最优子问题和重叠子问题特性。通过自底向上的方法,利用递推公式解决此类问题,强调了动态规划自下而上构造最优解的过程。
摘要由CSDN通过智能技术生成

爬楼梯问题,最小路径等一维DP问题分析

本文主要分析一维的动态规划问题,希望可以得到一般的接替思路和代码套路,首先放上题目。

在这里插入图片描述这是一个典型的动态规划问题。

  • 最优子问题:想要11的硬币数量最小,则(11-x,x)的硬币数也最小。
  • 重叠子问题:可能多次求解如2的硬币数量最小

但是我们先进行从上至下的方法,并且假设硬币是按照次序排列的,可以进行试当的剪枝。
对于递归问题,我们得到递推式:f(target) =min{ f(target-coins[i])+1}.

# 递归 递归方法,基于coins排序进行了一些剪枝
    def coinformoney(self, coins, target):
        # coins中的硬币是按照从小到大进行排序的,且可以重复使用
        # 难点1:如何设计递归技术的边界条件和返回值。方法: 一定要分析清楚函数的目标,返回值应当与目标一致
        if target < 0:
            return -1
        if target == 0:
            return 0
        # 难点2: 每次递归比较值的设计,如果是最小值设计Inf
        minnums = float('Inf')
        for i in range(len(coins)):
            # 难点3: 递归关系的得到,子问题是什么,子问题的返回是什么
            num 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值