在本问题中, 树指的是一个连通且无环的无向图。
输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, …, N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。
结果图是一个以边组成的二维数组。每一个边的元素是一对[u, v] ,满足 u < v,表示连接顶点u 和v的无向图的边。
返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v。
示例 1:
输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:
–1
– / \
2 - 3
示例 2:
输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:
5 - 1 - 2
-----|__|
-----4 - 3
注意:
输入的二维数组大小在 3 到 1000。
二维数组中的整数在1到N之间,其中N是输入数组的大小。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/redundant-connection
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
//union find 并查集
class Solution {
public:
int find(vector<int>&parent,int i)
{
if(parent[i]==-1)
{
return i;
}
return find(parent,parent[i]);
}
bool union_f(vector<int>&parent,int i,int j)
{
int x=find(parent,i);
int y=find(parent,j);
if(x!=y)
{
parent[x]=y;
return true;
}
return false;
}
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
vector<int>parent(1001,-1);
vector<int>result;
for(int i=0;i<edges.size();++i)
{
int x=edges[i][0];
int y=edges[i][1];
if(union_f(parent,x,y)==0)
{
if(result.size()==2)
{
result[0]=x;
result[1]=y;
}
else
{
result.push_back(x);
result.push_back(y);
}
}
}
return result;
}
};