图片模型
模糊图B、潜在图L与模糊核K的关系为:
B = K ⊗ L + N B = K ⊗ L + N B=K⊗L+N
其中,⊗代表卷积(非周期边界条件),N表示每个像素上的传感器噪声。
我们假设图像的像素值与传感器的辐照度线性相关。潜在图像L代表我们的目标图像;我们的目标是从B中恢复L,而没有对K的具体知识。
自然图像在梯度上满足重尾分布。下图显示了一幅自然图像及其梯度大小的直方图。分布表明,图像主要包含小的或零的梯度,但少数梯度有较大的幅度。我们用零均值高斯混合模型表示梯度的分布。之所以选择这种表示方式,是因为它可以很好地逼近经验分布,同时允许对我们的算法进行易于处理的估计。
重尾分布:梯度分布大多集中在小值上,但比高斯分布更有可能取到大值。这与直觉相对应,图像大面积存在恒定强度或柔和强度,因此梯度整体变化不大,偶尔会出现边缘或边界上因遮挡发生的大变化。
算法
总体框架
第一步:从输入的图片中得到模糊核,估计过程是以粗到细的方式进行,以避免局部最小值。
第二步:利用估计核函数,应用标准卷积算法估计潜在的(Unblurred)图像。
算法输入
- 模糊图像B
- 模糊图像中的一个方块
- 模糊核大小上的上界(以像素为单位)
- 关于模糊核(水平或垂直)方向的初始猜测
预处理过程
- 我们要求输入图像B在处理之前已经转换成线性颜色空间。在实验中,我们应用了 γ = 2.2 \gamma=2.2 γ=2.2的逆伽玛校正。
1 P i x e l v a l u e = ( C C D s e n s o r v a l u e ) 1 / γ 1Pixel \space value = (CCD \space sensor \space value)^{1/\gamma} 1Pixel value=(CCD sensor value)1/γ
if (GAMMA_CORRECTION~=1)
%%% gamma correct actual image
obs_im = (double(obs_im).^(GAMMA_CORRECTION))/(256^(GAMMA_CORRECTION-1));
else
obs_im = double(obs_im);
end
- 为了估计预期的模糊内核,我们将原始图像的所有颜色通道合并到用户指定的块中,生成灰度模糊块P
模糊核的求法
在给定灰度模糊块P时,我们以L的统计数据作为先验为指导,通过寻找概率最高的值来估计K和潜在的块图像 L p L_p Lp。因为先验知识是在梯度上而非亮度,因此选择梯度进行优化。卷积是线性操作,因此可以使用
∇ P = ∇ L p ⊗ K + n o i s e \nabla P = \nabla L_p ⊗ K + noise ∇P=∇Lp⊗K+noise
这里假设噪声满足方差为 σ 2 \sigma^2 σ2的高斯分布。
潜在图像的梯度 p ( ∇ L p ) p(\nabla L_p) p(∇Lp)是一个混合的C-零均值的高斯混合分布,即满足第C个高斯满足方差为 v c v_c vc权重为 π c π_c πc;我们对内核使用一个稀疏先验