Removing-Camera-Shake-from-a-Single-Photograph图像去模糊读书笔记

这篇读书笔记详细介绍了从单张照片中去除相机抖动造成的模糊的技术。首先,建立了模糊图像、潜在清晰图像与模糊核之间的数学模型。接着,讨论了算法的总体框架,包括模糊核的估计方法,使用了多尺度和用户监督策略。文中提到了预处理步骤,如线性色彩空间转换和伽马校正。在模糊核求解部分,采用了变分贝叶斯方法和梯度分布的先验知识。最后,通过反卷积算法重建清晰图像。该算法对用户有较高交互性,需要指定模糊核大小、初始方向等参数。
摘要由CSDN通过智能技术生成

图片模型

模糊图B、潜在图L与模糊核K的关系为:
B = K ⊗ L + N B = K ⊗ L + N B=KL+N
其中,⊗代表卷积(非周期边界条件),N表示每个像素上的传感器噪声。

我们假设图像的像素值与传感器的辐照度线性相关。潜在图像L代表我们的目标图像;我们的目标是从B中恢复L,而没有对K的具体知识。

自然图像在梯度上满足重尾分布。下图显示了一幅自然图像及其梯度大小的直方图。分布表明,图像主要包含小的或零的梯度,但少数梯度有较大的幅度。我们用零均值高斯混合模型表示梯度的分布。之所以选择这种表示方式,是因为它可以很好地逼近经验分布,同时允许对我们的算法进行易于处理的估计。

enter description here

重尾分布:梯度分布大多集中在小值上,但比高斯分布更有可能取到大值。这与直觉相对应,图像大面积存在恒定强度或柔和强度,因此梯度整体变化不大,偶尔会出现边缘或边界上因遮挡发生的大变化。

算法

总体框架

第一步:从输入的图片中得到模糊核,估计过程是以粗到细的方式进行,以避免局部最小值。
第二步:利用估计核函数,应用标准卷积算法估计潜在的(Unblurred)图像。

算法输入

  • 模糊图像B
  • 模糊图像中的一个方块
  • 模糊核大小上的上界(以像素为单位)
  • 关于模糊核(水平或垂直)方向的初始猜测

预处理过程

  • 我们要求输入图像B在处理之前已经转换成线性颜色空间。在实验中,我们应用了 γ = 2.2 \gamma=2.2 γ=2.2的逆伽玛校正。
    1 P i x e l   v a l u e = ( C C D   s e n s o r   v a l u e ) 1 / γ 1Pixel \space value = (CCD \space sensor \space value)^{1/\gamma} 1Pixel value=(CCD sensor value)1/γ
  if (GAMMA_CORRECTION~=1)
    %%% gamma correct actual image
    obs_im = (double(obs_im).^(GAMMA_CORRECTION))/(256^(GAMMA_CORRECTION-1));
  else
    obs_im = double(obs_im);
  end
  • 为了估计预期的模糊内核,我们将原始图像的所有颜色通道合并到用户指定的块中,生成灰度模糊块P

模糊核的求法

在给定灰度模糊块P时,我们以L的统计数据作为先验为指导,通过寻找概率最高的值来估计K和潜在的块图像 L p L_p Lp。因为先验知识是在梯度上而非亮度,因此选择梯度进行优化。卷积是线性操作,因此可以使用

∇ P = ∇ L p ⊗ K + n o i s e \nabla P = \nabla L_p ⊗ K + noise P=LpK+noise

这里假设噪声满足方差为 σ 2 \sigma^2 σ2的高斯分布。

潜在图像的梯度 p ( ∇ L p ) p(\nabla L_p) p(Lp)是一个混合的C-零均值的高斯混合分布,即满足第C个高斯满足方差为 v c v_c vc权重为 π c π_c πc;我们对内核使用一个稀疏先验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值