这本书第二章引发了一个问题,求最大子序列和,并给出了四种解题算法进行对比。
问题描述:给定一个数组,求出该数组的最大子序列。
算法1
暴力搜索:即找出所有的子序列,并对其求和来与最大值比较。时间复杂度为O(n3);
int maxSum1(int sum[],int start,int end){
int i,j,k;
int maxSum = 0;
int tmpSum;
for(i = start;i<end;i++){
for(j = i;j<end;j++){
tmpSum = 0;
for(k = i;k<j;k++)
tmpSum+=sum[k];
if(tmpSum>maxSum)
maxSum = tmpSum;
}
}
return maxSum;
}
算法2
对算法1进行优化,发现,在最内层中,有大量的工作是在做重复的事情,因此将其优化为如下:时间复杂度为O(n2)
int maxSum2(int sum[],int start,int end){
int i,j,k;
int maxSum = 0;
int tmpSum;
for(i = start;i<end;i++){
tmpSum = 0;
for(j = i;j<end;j++){