数据结构与算法分析第二章读书笔记

本文是关于数据结构与算法分析的读书笔记,重点介绍了四种算法:暴力搜索、优化后的搜索、二分法和数据流算法。其中,二分法和数据流算法分别具有O(NlogN)和O(N)的时间复杂度。文中还探讨了如何分析算法的时间复杂度,特别是对O(logN)的理解,并给出了对分查找、欧几里得算法和幂运算的示例,证明它们的时间复杂度均为O(logN)。
摘要由CSDN通过智能技术生成
这本书第二章引发了一个问题,求最大子序列和,并给出了四种解题算法进行对比。
问题描述:给定一个数组,求出该数组的最大子序列。

算法1

暴力搜索:即找出所有的子序列,并对其求和来与最大值比较。时间复杂度为O(n3);

int maxSum1(int sum[],int start,int end){
    int i,j,k;
    int maxSum = 0;
    int tmpSum;
    for(i = start;i<end;i++){
        for(j = i;j<end;j++){
            tmpSum = 0;
            for(k = i;k<j;k++)
                tmpSum+=sum[k];
            if(tmpSum>maxSum)
                maxSum = tmpSum;
        }
    }
    return maxSum;
}

算法2

对算法1进行优化,发现,在最内层中,有大量的工作是在做重复的事情,因此将其优化为如下:时间复杂度为O(n2)

int maxSum2(int sum[],int start,int end){
        int i,j,k;
    int maxSum = 0;
    int tmpSum;
    for(i = start;i<end;i++){
        tmpSum = 0;
        for(j = i;j<end;j++){
         
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值