MS COCO数据集目标检测评估(Detection Evaluation)(来自官网)

目标检测评估

1. Detection Evaluation

本页介绍了COCO使用的检测评估指标。此处提供的评估代码可用于在公开可用的COCO验证集上获得结果。它计算下面描述的多个指标。为了在COCO测试集上获得结果,其中隐藏了实际真值注释,必须将生成的结果上载到评估服务器。下面描述的完全相同的评估代码用于评估测试集的结果。

2. Metrics(指标)

 

Precision 表示正确识别物体A的个数占总识别出的物体个数n的百分数

Recall   表示正确识别物体A的个数占测试集中物体A的总个数的百分数

fp :false positive误报

fn :false negative漏报

tp:true positive

tn:true negative

iou:intersection-over-union

 

以下12个指标用于表征COCO上物体检测器的性能:

 

Average Precision (AP):

AP                                % AP at IoU=0.50:0.05:0.95 (primary challenge metric)

APIoU=.50                   % AP at IoU=0.50 (PASCAL VOC metric)

APIoU=.75                   % AP at IoU=0.75 (strict metric)

AP Across Scales:

APsmall                       % AP for small objects: area < 322

APmedium                   % AP for medium objects: 322 < area < 962

APlarge                        % AP for large objects: area > 962

Average Recall (AR):

ARmax=1                     % AR given 1 detection per image

ARmax=10                   % AR given 10 detections per image

ARmax=100                 % AR given 100 detections per image

AR Across Scales:

ARsmall                       % AR for small objects: area < 322

ARmedium                   % AR for medium objects: 322 < area < 962

ARlarge                        % AR for large objects: area > 962

1)除非另有说明,否则AP和AR在多个交汇点(IoU)值上取平均值。具体来说,我们使用10个IoU阈值0.50:0.05:0.95。这是对传统的一个突破,其中AP是在一个单一的0.50的IoU上计算的(这对应于我们的度量APIoU=.50 )。超过均值的IoUs奖励更好定位的探测器(Averaging over IoUs rewards detectors with better localization.)。

2)AP是所有类别的平均值。传统上,这被称为“平均准确度”(mAP,mean average precision)。我们没有区分AP和mAP(同样是AR和mAR),并假定从上下文中可以清楚地看出差异。

3)AP(所有10个IoU阈值和所有80个类别的平均值)将决定赢家。在考虑COCO性能时,这应该被认为是最重要的一个指标。

4)在COCO中,比大物体相比有更多的小物体。具体地说,大约41%的物体很小(面积<322),34%是中等(322 < area < 962)),24%大(area > 962)。测量的面积是分割掩码(segmentation mask)中的像素数量。

5)AR是在每个图像中检测到固定数量的最大召回(recall),在类别和IoU上平均。AR与提案评估(proposal evaluation)中使用的同名度量相关,但是按类别计算。

6)所有度量标准允许每个图像(在所有类别中)最多100个最高得分检测进行计算。

7)除了IoU计算(分别在框(box)或掩码(mask)上执行)之外,用边界框和分割掩码检测的评估度量在所有方面是相同的。

3. Evaluation Code

评估代码可在COCO github上找到。 具体来说,分别参见Matlab或Python代码中的CocoEval.mcocoeval.py。另请参阅Matlab或Python代码(demo)中的evalDemo。在运行评估代码之前,请按结果格式页面上描述的格式准备结果(查看具体的结果格式MS COCO数据集比赛参与(participate)(来自官网))。

评估参数如下(括号中的默认值,一般不需要改变):

 

params{

    "imgIds"         : [all]N img ids to use for evaluation

    "catIds "          : [all] K cat ids to use for evaluation

    "iouThrs"        : [0.5:0.05:0.95] T=10 IoU thresholds for evaluation

    "recThrs"        : [0:0.01:1] R=101 recall thresholds for evaluation

    "areaRng"      : [all,small,medium,large] A=4 area ranges for evaluation

    "maxDets"      : [1 10 100] M=3 thresholds on max detections per image

    "useSegm"    : [1] if true evaluate against ground-truth segments

    "useCats"      : [1] if true use category labels for evaluation

}

运行评估代码通过调用evaluate()和accumulate()产生两个数据结构来衡量检测质量。这两个结构分别是evalImgs和eval,它们分别衡量每个图像的质量并聚合到整个数据集中。evalImgs结构体具有KxA条目,每个评估设置一个,而eval结构体将这些信息组合成 precision 和 recall 数组。这两个结构的细节如下(另请参阅CocoEval.mcocoeval.py):

 

 

evalImgs[{

    "dtIds"               : [1xD] id for each of the D detections (dt)

    "gtIds"               : [1xG] id for each of the G ground truths (gt)

    "dtImgIds"        : [1xD] image id for each dt

    "gtImgIds"        : [1xG] image id for each gt

    "dtMatches"     : [TxD] matching gt id at each IoU or 0

    "gtMatches"     : [TxG] matching dt id at each IoU or 0

    "dtScores"       : [1xD] confidence of each dt

    "dtIgnore"        : [TxD] ignore flag for each dt at each IoU

    "gtIgnore"        : [1xG] ignore flag for each gt

}]

 

 

eval{

    "params"        : parameters used for evaluation

    "date"              : date evaluation was performed

    "counts"          : [T,R,K,A,M] parameter dimensions (see above)

    "precision"     : [TxRxKxAxM] precision for every evaluation setting

    "recall"            : [TxKxAxM] max recall for every evaluation setting

}

最后,summary()根据eval结构计算前面定义的12个检测指标。

4. Analysis Code

除了评估代码外,我们还提供一个函数analyze()来执行误报的详细分类。这受到了Derek Hoiem等人在诊断物体检测器中的错误(Diagnosing Error in Object Detectors)的启发,但在实现和细节方面却有很大不同。代码生成这样的图像:

这两幅图显示了来自2015年检测挑战赛获胜者Kaiming He等人的ResNet(bbox)检测器的分析结果。左图显示了ResNet的人员类别错误;右图是ResNet对所有类别平均值的整体分析。每个绘图是一系列精确召回(precision recall)曲线,其中每个PR曲线被保证严格地高于之前的评估设置变得更宽容。曲线如下:

1)C75:在IoU = 0.75(严格的IoU的AP)的PR(precision),对应于APIoU=.75度量曲线下的面积(area under curve )。

2)C50:IoU = 0.50处的PR(PASCAL IoU处的AP),对应于APIoU=.50度量曲线下面积。

3)Loc:在IoU =0 .10的PR(定位误差(localization errors ignored)被忽略,但不重复检测)。 所有其余的设置使用IoU = 0.1。

4)Sim:超类别误报(fps,supercategory false positives)后的PR被删除。具体而言,与具有不同类标签但属于同一个超类别的对象的任何匹配都不会被视为fp(或tp)。通过设置同一超类别中的所有对象与所讨论的类具有相同的类标签并将它们的忽略标志设置为1来计算Sim。注意,该人是单例超类别,因此其Sim结果与Loc完全相同。

5)Oth:所有类型混乱被删除后的PR。与Sim类似,除了现在如果检测与任何其他对象匹配,则不再是fp(或tp)。Oth是是被如下方式进行计算,设置所有其他对象具有与所讨论的类相同的类标签,并将它们的忽略标志设置为1。

6)BG:所有的背景fps(background)(和类混乱(class confusion))被删除后的PR。 对于单个类别,BG是一个阶跃函数,直到达到最大召回后才降为0(跨类别平均后曲线更平滑)。

7)FN:在所有剩余错误被删除后(平均AP = 1)的PR。

 

每条曲线下面的区域显示在图例的括号中。在ResNet检测器的情况下,IoU = 0.75的整体AP为0.399,完美定位将使AP增加到0.682。有趣的是,消除所有类别混乱(超范畴内和超范畴内)只会将AP略微提升至0.713。除去背景fp会将性能提高到0.870 AP,而其余的错误则缺少检测(尽管假设更多的检测被添加,这也会增加大量的fps)。总之,ResNet的错误来自不完美的定位和背景混淆。

对于一个给定的探测器(detector),代码总共产生了372个块(plots)!共有80个类别(category),12个超类别(supercategory),1个总体结果,总共93个不同的设置,分析是在4个尺度(scale)(全部,小,中,大,所以93 * 4 = 372个块)进行。 文件命名为[supercategory] - [category] - [size] .pdf(对于80 * 4每个分类结果),overall- [supercategory] - [size] .pdf(对于12 * 4每个超类别结果)全部[[size] .pdf为1 * 4的整体结果。在所有plot中,通常总体和超类别的结果是最感兴趣的。

 

注意:analyze()可能需要很长时间才能运行,请耐心等待。因此,我们通常不会在评估服务器上运行此代码;您必须使用验证集在本地运行代码。最后,目前analyze()只是Matlab API的一部分; Python代码即将推出。

 

参照 MobileNet-SSD(chuanqi305)的caffe模型(prototxt文件) | github,绘制出MobileNet-SSD的整体结构如下(忽略一些参数细节):

图片中从上到下分别是MobileNet v1模型(统一输入大小为300x300)、chuanqi305的Mobilenet-SSD网络、VGG16-SSD网络。且默认都是用3x3大小的卷积核,除了MobileNet-SSD的Conv14_1、Conv15_1、Conv16_1、Conv17_1和VGG16-SSD的Conv8_1、Conv9_1、Conv10_1、Conv11_1用的是1x1大小的卷积核。
图中每个立方体代表对应层的输出特征图;

首先观察基础网络部分
    MobileNet-SSD从Conv0到Conv13的配置与MobileNet v1模型是完全一致的,相当于只是去掉MobileNet v1最后的全局平均池化、全连接层和Softmax层;
    再看SSD部分
    在VGG16-SSD的方案中,用Conv6和Conv7分别替代了原VGG16的FC6和FC7;
        MobileNet-SSD和VGG16-SSD都是从六个不同尺度的特征图上提取特征来做Detections,它们的大小为:
          MobileNet-SSD   |   VGG16-SSD
          ----------------+-----------------
          19 x 19 x  512  |   38 x 38 x  512
          10 x 10 x 1024  |   19 x 19 x 1024
           5 x  5 x  512  |   10 x 10 x  512
           3 x  3 x  256  |   5  x  5 x  256
           2 x  2 x  256  |   3  x  3 x  256
           1 x  1 x  128  |   1  x  1 x  128
        从通道数量上看,两者是完全一致的
            从特征图分辨率上看,MobileNet-SSD都只有VGG16-SSD的一半
            这意味着什么?
                打个比方,假设对于那个分辨率最大的特征图,都能用4x4的感受野检测出一只猫,如下图所示,黑色是头,红色是身体,棕色是腿,黄色是尾巴。
                
            
        
    

那用MobileNet-SSD可以检测出占原图419≈0.211419≈0.211大小的猫,而VGG16-SSD却可以检测出占原图438≈0.105438≈0.105大小的猫;


    
        
            那为什么MobileNet-SSD为什么不和VGG16-SSD一样,从38x38分辨率的特征图开始做Detections呢?
                回到上一篇博文《SSD框架解析 - 网络结构| Hey~YaHei!》,VGG16是从Conv4_3也就是第10层卷积层取出38x38分辨率的特征图;
                再观察一下MobileNet v1-300的模型,想要取出38x38分辨率的特征图,最深也只能从Conv5也就是第6层卷积层取出,这个位置比较浅,实在很难保证网络提取出了足够有用的特征可以使用;
                那可以通过增加最初输入图片的分辨率来解决这个问题吗?
                倒也可以,比如把输入图片大小扩大到512x512,那么Conv11的输出就变为32x32,按上上一点的描述,可以检测出占原图432=0.125432=0.125大小的猫;
                但要付出相应的代价,仅考虑基础网络部分(Conv0到Conv13),参数数量和乘加运算量均提高为原来的 (512300)2≈2.913(512300)2≈2.913 倍(不考虑padding的影响,计算方式可以参考《MobileNets v1模型解析 - 效率比较 | Hey~YaHei!》),MobileNet本身小模型的低参数量、低运算量优势变得不再明显。
            
        
        还有一个小细节,观察特征图到Detections的路径
        VGG16-SSD中用的都是3x3大小的卷积核,缺省框数量依次是4、6、6、6、4、4;
        MobileNet-SSD中用的都是1x1大小的卷积核,缺省框数量依次是3、6、6、6、6、6;这一部分的改动不是很能理解,3x3卷积改1x1卷积可能是实践中发现改动后效果差不多但可以减少运算量;缺省框数量改动的原因就不得而知了~
    
BN层合并

对比chuanqi305的 train模型 和 deploy模型 还能发现一件有趣的事情——deploy模型中的BN层和scale层都不见啦!!!
BN层是这样随随便便就能丢弃的么?没道理啊!

几经辗转,查阅资料之后发现,原来BN层是可以合并进前一层的卷积层或全连接层的,而且这还有利于减少预测用时。
参考《Real-time object detection with YOLO - Converting to Metal》

合并的原理:卷积层、全连接层和BN层都是纯粹的线性转换。

数学推导也很简单:假设图片为 xx ,卷积层权重为 ww 。
那么对于卷积运算有,

conv[j]=x[i]w[0]+x[i+1]w[1]+x[i+2]w[2]+…+x[i+k]w[k]+bconv[j]=x[i]w[0]+x[i+1]w[1]+x[i+2]w[2]+…+x[i+k]w[k]+b
————————————————
版权声明:本文为CSDN博主「Danbinabo_zzz」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/danbinbo/article/details/96493173

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值