大量数据去重:Bitmap和布隆过滤器(Bloom Filter)

5TB的硬盘上放满了数据,请写一个算法将这些数据进行排重。如果这些数据是一些32bit大小的数据该如何解决?如果是64bit的呢?

在面试时遇到的问题,问题的解决方案十分典型,但对于海量数据处理接触少的同学可能一时也想不到什么好方案。介绍两个算法,对于空间的利用到达了一种极致,那就是Bitmap和布隆过滤器(Bloom Filter)

Bitmap算法

在网上并没有找到Bitmap算法的中文翻译,在《编程珠玑》中有提及。与其说是算法,不如说是一种紧凑的数据存储结构。其实如果并非如此大量的数据,有很多排重方案可以使用,典型的就是哈希表

public int[] removeDuplicates(int[] array) {
	int index = 0;
	int[] newArray = new int[array.length];
    Map<Integer, Boolean> maps = new LinkedHashMap<Integer, Boolean>();
    for(int num : array) {
        if(!maps.contains(num)) {
	        newArray[index++] = num;
            maps.put(num, true);
        }
    }

    return newArray;
}

实际上,哈希表实际上为每一个可能出现的数字提供了一个一一映射的关系,每个元素都相当于有了自己的独享的一份空间,这个映射由散列函数来提供(这里我们先不考虑碰撞)。实际上哈希表甚至还能记录每个元素出现的次数,这样的数据结构完成这个任务有点“大材小用”了。

我们拆解一下我们的需求:

  1. 集合中每个元素(示例中是int)有一个独享的空间
  2. 找到一个到这个空间的映射方法

这个空间要多大?对于我们的问题来说,一个boolean就够了,或者说,1个bit就够了,我们只想知道某个元素出现过没有。如果为每个所有可能的值分配1个bit,32bit的int所有可能取值需要内存空间为:

2 32 b i t = 2 29 B y t e = 512 M B 2^{32} bit = 2^{29} Byte = 512 MB 232bit=229Byte=512MB

那怎么样完成这个映射呢?其实就是Bitmap所要完成的工作了。如果我们把整型0x01、0x02、…、0x08的空间依次映射到一个Byte上,每个bit就代表这个int值是否出现过,初值为0(false)。

若扩展到整个int取值域,申请一个byte[]即可,示例代码如下:

public static final int _1MB = 1024 * 1024;
//每个byte记录8bit信息,也就是8个数是否存在于数组中
public static byte[] flags = new byte[ 512 * _1MB ];


public static void main(String[] args) {
	//待判重数据
    int[] array = {255, 1024, 0, 65536, 255};

    int index = 0;
    for(int num : array) {
	    if(!getFlag(num)) {
	        //未出现的元素
	        array[index] = num;
	        index = index + 1;
            //设置标志位
            setFlag(num);
            System.out.println("set " + num);
        } else {
	        System.out.println(num + " already exist");
	    }
    }
}

public static void setFlag(int num) {
	//使用每个数的低三位作为byte内的映射
    //例如: 255 = (11111111)
    //低三位(也就是num & (0x07))为(111) = 7, 则byte的第7位为1, 表示255已存在
	flags[num >> 3] |= 0x01 << (num & (0x07));
}

public static boolean getFlag(int num) {
	return (flags[num >> 3] >> (num & (0x07)) & 0x01) == 0x01;
}

其实,就是按int从小到大的顺序依次摆放到byte[]中,仅涉及到一些除以2的整次幂和对2的整次幂取余的位操作小技巧。鉴于评论区对位操作有疑问,下面基于java.util.BitSet重写了一下上面的代码的关键函数setFlaggetFlag

static BitSet seen = new BitSet((1 << 31) - 1);
public static void setFlag(int num) {
	seen.set(num);
}
public static boolean getFlag(int num) {
	return set.get(num);
}

很显然,对于小数据量、数据取值很稀疏,上面的方法并没有什么优势,但对于海量的、取值分布很均匀的集合进行去重,Bitmap极大地压缩了所需要的内存空间。于此同时,还额外地完成了对原始数组的排序工作。缺点是,Bitmap对于每个元素只能记录1bit信息,如果还想完成额外的功能,恐怕只能靠牺牲更多的空间、时间来完成了。

布隆过滤器(Bloom Filter)

然而Bitmap不是万能的,如果数据量大到一定程度,如开头写的64bit类型的数据,还能不能用Bitmap?我们来算一算:

2 64 b i t = 2 61 B y t e = 2048 P B = 2 E B 2^{64} bit = 2^{61} Byte = 2048 PB = 2 EB 264bit=261Byte=2048PB=2EB

EB(Exabyte,艾字节)这个计算机科学中统计数据量的单位有多大,有兴趣的小伙伴可以查阅下资料。这个量级的Bitmap,已经不是人类硬件所能承担的了。我相信谁也不会想用集群去计算这么一个问题吧1?所以Bitmap的好处在于空间复杂度不随原始集合内元素的个数增加而增加,而它的坏处也源于这一点——空间复杂度随集合内最大元素增大而线性增大

所以接下来,我们要引入另一个著名的工业实现——布隆过滤器(Bloom Filter)。如果说Bitmap对于每一个可能的整型值,通过直接寻址的方式进行映射,相当于使用了一个哈希函数,那布隆过滤器就是引入了 k ( k > 1 ) k(k>1) k(k>1)相互独立的哈希函数,保证在给定的空间、误判率下,完成元素判重的过程。下图中是 k = 3 k=3 k=3时的布隆过滤器。
图1 布隆过滤器(来源:wiki)

x , y , z x,y,z x,y,z经由哈希函数映射将各自在Bitmap中的3个位置置为1,当 w w w出现时,仅当3个标志位都为1时,才表示 w w w在集合中。图中所示的情况,布隆过滤器将判定 w w w不在集合中。

那么布隆过滤器的误差有多少?我们假设所有哈希函数散列足够均匀,散列后落到Bitmap每个位置的概率均等。Bitmap的大小为 m m m、原始数集大小为 n n n、哈希函数个数为 k k k

  1. 1个散列函数时,接收一个元素时Bitmap中某一位置为0的概率为:
    1 − 1 m 1-\dfrac {1}{m} 1m1
  2. k k k个相互独立的散列函数,接收一个元素时Bitmap中某一位置为0的概率为:
    ( 1 − 1 m ) k ({1-\dfrac {1}{m}})^k (1m1)k
  3. 假设原始集合中,所有元素都不相等(最严格的情况),将所有元素都输入布隆过滤器,此时某一位置仍为0的概率为:
    ( 1 − 1 m ) n k ({1-\dfrac {1}{m}})^{nk} (1m1)nk
    某一位置为1的概率为:
    1 − ( 1 − 1 m ) n k 1-({1-\dfrac {1}{m}})^{nk} 1(1m1)nk
  4. 当我们对某个元素进行判重时,误判即这个元素对应的 k k k个标志位不全为1,但所有 k k k个标志位都被置为1,误判率 ε \varepsilon ε为:
    ε ≈ [ 1 − ( 1 − 1 m ) n k ] k \varepsilon \approx [1-({1-\dfrac {1}{m}})^{nk}]^k ε[1(1m1)nk]k
    这个误判率应当比实际值大,因为将判断正确的情况也算进去了。根据著名极限 lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim\limits_{n\to\infty}{(1+\dfrac {1}{n})^n} = e nlim(1+n1)n=e可以得到:
    ε ≈ [ 1 − e − n k m ] k \varepsilon \approx [1-e^{-\frac{nk}{m}}]^k ε[1emnk]k
    ε \varepsilon ε得到最优解2,当且仅当:
    k = m n ln ⁡ 2 ≈ 0.7 m n k=\frac{m}{n} \ln2\approx 0.7\frac{m}{n} k=nmln20.7nm
    此时,误判率 ε \varepsilon ε与数集大小和
    ε ≈ ( 1 − e − ln ⁡ 2 ) l n 2 m n = 0. 5 l n 2 m n = 0. 5 k \varepsilon \approx (1 - e ^{-\ln2}) ^ {ln2\frac{m}{n}} = 0.5 ^ {ln2\frac{m}{n}} = 0.5^k ε(1eln2)ln2nm=0.5ln2nm=0.5k

回到我们的问题中,有趣的是由于硬盘空间是限制死的,集合元素个数 n n n的大小反而与单个数据的比特数成反比,数据长度为64bit时,

n = 5 T B 64 b i t = 5 × 2 40 B y t e 8 B y t e ≈ 2 39 n = \dfrac{5TB }{ 64bit} = \dfrac{5 \times 2 ^{40}Byte}{8Byte} \approx 2^{39} n=64bit5TB=8Byte5×240Byte239

若以 m = 8 n , k = 0.7 m n = 5.6 m=8n,k=0.7\frac{m}{n}=5.6 m=8nk=0.7nm=5.6计算,Bitmap集合的大小为 2 42 b i t = 2 39 B y t e = 512 G B 2^{42}bit=2^{39}Byte = 512GB 242bit=239Byte=512GB,此时的 ε = 0. 5 5.6 ≈ 0.02 \varepsilon = 0.5 ^{5.6} \approx 0.02 ε=0.55.60.02。并且要知道,以上计算的都是误差的上限。当输入元素个数逼近集合总元素 n n n时,误差率便逐渐逼近这个上界。

布隆过滤器通过引入一定错误率,使得海量数据判重在可以接受的内存代价中得以实现。从上面的公式可以看出,随着集合中的元素不断输入过滤器中( n n n增大),误差将越来越大。但是,当Bitmap的大小 m m m(指bit数)足够大时,比如比所有可能出现的不重复元素个数还要大10倍以上时,错误概率是可以接受的。相比于单纯的bitmap,这个算法跳出了空间复杂度对待判元素值域的依赖,转而依赖总元素个数,这是一个更加工程可实现的算法——前者不管你的数集有多大,所需要的内存空间是一定的;后者,数集越大,想要达到相同误判率,所需要的内存空间就越大。

最后我们所要做的,就是实现一个布隆过滤器,然后利用它对硬盘上的5TB数据一一判重,并写回硬盘中。这其中可能涉及到利用读写的buffer,待有时间补上。

附录

这里有一个google实现的布隆过滤器,我们来看看它的误判率:

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import java.util.HashSet;
import java.util.Random;

public class testBloomFilter {

    static int sizeOfNumberSet = Integer.MAX_VALUE >> 4;

    static Random generator = new Random();

    public static void main(String[] args) {

        int error = 0;
        HashSet<Integer> hashSet = new HashSet<Integer>();
        BloomFilter<Integer> filter = BloomFilter.create(Funnels.integerFunnel(), sizeOfNumberSet);

        for(int i = 0; i < sizeOfNumberSet; i++) {
            int number = generator.nextInt();
            if(filter.mightContain(number) != hashSet.contains(number)) {
                error++;
            }
            filter.put(number);
            hashSet.add(number);
        }

        System.out.println("Error count: " + error + ", error rate = " + String.format("%f", (float)error/(float)sizeOfNumberSet));
    }
}

在这个实现中,Bitmap的集合 m m m、输入的原始数集合 n n n、哈希函数 k k k的取值都是按照上面最优的方案选取的,默认情况下保证误判率 ε = 0. 5 k < 0.03 ≈ 0. 5 5 \varepsilon=0.5^k<0.03\approx0.5^5 ε=0.5k<0.030.55,因而此时 k = 5 k=5 k=5

/**
 * Creates a {@link BloomFilter BloomFilter<T>} with the expected number of
 * insertions and a default expected false positive probability of 3%.
 */
public static <T> BloomFilter<T> create(Funnel<T> funnel, int expectedInsertions /* n */) {
    return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
}

而还有一个很有趣的地方是,实际使用的却并不是5个哈希函数。实际进行映射时,而是分别使用了一个64bit哈希函数的高、低32bit进行循环移位。注释中包含着这个算法的论文“Less Hashing, Same Performance: Building a Better Bloom Filter”,论文中指明其对过滤器性能没有明显影响。很明显这个实现对于 m > 2 32 m > 2^{32} m>232时的支持并不好,因为当大于 2 31 − 1 2^{31}-1 2311的下标在算法中并不能被映射到。

enum BloomFilterStrategies implements BloomFilter.Strategy {
  /**
   * See "Less Hashing, Same Performance: Building a Better Bloom Filter" by Adam Kirsch and
   * Michael Mitzenmacher. The paper argues that this trick doesn't significantly deteriorate the
   * performance of a Bloom filter (yet only needs two 32bit hash functions).
   */
  MURMUR128_MITZ_32() {
    @Override public <T> boolean put(T object, Funnel<? super T> funnel,
        int numHashFunctions, BitArray bits) {
      long hash64 = Hashing.murmur3_128().hashObject(object, funnel).asLong();
      int hash1 = (int) hash64;
      int hash2 = (int) (hash64 >>> 32);
      boolean bitsChanged = false;
      for (int i = 1; i <= numHashFunctions; i++) {
        int nextHash = hash1 + i * hash2;
        if (nextHash < 0) {
          nextHash = ~nextHash;
        }
        bitsChanged |= bits.set(nextHash % bits.bitSize());
      }
      return bitsChanged;
    }

    @Override public <T> boolean mightContain(T object, Funnel<? super T> funnel,
        int numHashFunctions, BitArray bits) {
      long hash64 = Hashing.murmur3_128().hashObject(object, funnel).asLong();
      int hash1 = (int) hash64;
      int hash2 = (int) (hash64 >>> 32);
      for (int i = 1; i <= numHashFunctions; i++) {
        int nextHash = hash1 + i * hash2;
        if (nextHash < 0) {
          nextHash = ~nextHash;
        }
        if (!bits.get(nextHash % bits.bitSize())) {
          return false;
        }
      }
      return true;
    }
  };
  ...
}

  1. 勘误:原谅我当年的孤陋寡闻,工业还有另一个著名实现是Map Reduce,正是用集群方案来解决“海量数据处理”的问题。 ↩︎

  2. WikiPedia - Bloom Filter ↩︎

  • 32
    点赞
  • 161
    收藏
    觉得还不错? 一键收藏
  • 19
    评论
Redis提供的Bitmap可以作为布隆过滤器所需要的位数组的基础。布隆过滤器是一种数据结构,用于判断一个元素是否属于一个集合,具有高效的添加和查询操作。布隆过滤器使用一系列的哈希函数将元素映射到位数组中的多个位置,通过检查这些位置是否被置为1来判断元素是否存在。Redis的Bitmap就是一种位数组,可以将布隆过滤器的位数组存储在其中。Bitmap提供了位操作的功能,可以用来设置和查询位的状态。通过使用Bitmap,我们可以方便地实现布隆过滤器的添加和查询操作。因此,Redis的Bitmap正好适用于实现布隆过滤器的功能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [借助Redis Bitmap实现简单的布隆过滤器](https://blog.csdn.net/huangchonghai/article/details/120340977)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [玩转Redis-Redis中布隆过滤器使用及原理](https://blog.csdn.net/u010887744/article/details/108700911)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值