机器学习分类算法常用评价指标

https://www.cnblogs.com/asialee/p/9800039.html 1. 准确率,召回率,精确率,F1-score,Fβ,ROC曲线,AUC值 为了评价模型以及在不同研究者之间进行性能比较,需要统一的评价标准。根据数据挖掘理论的一般方法,评价模型预测能力最广泛使用的是...

2018-10-17 01:42:11

阅读数 901

评论数 0

机器学习算法 --- Decision Trees Algorithms

https://www.cnblogs.com/God-Li/p/9179039.html一、Decision Trees Agorithms的简介   决策树算法(Decision Trees Agorithms),是如今最流行的机器学习算法之一,它即能做分类又做回归(不像之前介绍的其他学习算法...

2018-06-13 21:12:09

阅读数 197

评论数 0

特征工程基本流程

https://www.cnblogs.com/infaraway/p/8645133.html 前言   特征是数据中抽取出来的对结果预测有用的信息,可以是文本或者数据。特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。过程包含了特征提取、...

2018-03-25 23:37:24

阅读数 291

评论数 0

TensorFlow 实战之实现卷积神经网络

http://blog.csdn.net/qq_37608890/article/details/79371347 本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。 一、相关性概念 1、卷...

2018-02-25 22:56:04

阅读数 420

评论数 0

机器学习笔记4-Tensorflow线性模型示例及TensorBoard的使用

https://www.cnblogs.com/wushangjue/p/8287369.html 前言 在上一篇中,我简单介绍了一下Tensorflow以及在本机及阿里云的PAI平台上跑通第一个示例的步骤。在本篇中我将稍微讲解一下几个基本概念以及Tensorflo...

2018-01-15 22:17:07

阅读数 258

评论数 0

译文 | 与TensorFlow的第一次接触 第三章:聚类

http://blog.csdn.net/leadai/article/details/78733676 再设经典课程 重温深度学习阅读全文> 正文共6615个字,33张图,预计阅读时间:17分钟。 前一章节中介绍的线性回归是一种监督...

2017-12-13 14:20:26

阅读数 581

评论数 0

TensorFlow下构建高性能神经网络模型的最佳实践

作者简介:李嘉璇,《TensorFlow技术解析与实战》作者,有处理图像、社交文本数据情感分析、数据挖掘等实战经验。曾任职百度研发工程师,目前研究构建高性能的神经网络模型及TensorFlow下的压缩工具链,包括模型量化、剪枝。  本文为《程序员》原创文章,未经允许不得转载,更多精彩文章请订阅《...

2017-11-09 17:23:22

阅读数 518

评论数 0

caffe源码 池化层 反向传播

http://www.cnblogs.com/ERKE/p/7686088.html 图示池化层(前向传播) 池化层其实和卷积层有点相似,有个类似卷积核的窗口按照固定的步长在移动,每个窗口做一定的操作,按照这个操作的类型可以分为两种池化层: 输入参数如下: 输入: 1...

2017-10-18 13:03:47

阅读数 716

评论数 0

深度学习:Keras入门(一)之基础篇

http://www.cnblogs.com/lc1217/p/7132364.html 1.关于Keras         1)简介                    Keras是由纯python编写的基于theano/tensorflow的深度学习框架。    ...

2017-07-07 16:33:21

阅读数 56397

评论数 12

OpenCV 之 神经网络 (一)

http://www.cnblogs.com/xinxue/p/5789421.html   人工神经网络(ANN) 简称神经网络(NN),能模拟生物神经系统对物体所作出的交互反应,是由具有适应性的简单单元(称为神经元)组成的广泛并行互连网络。 1  神经元 1.1  M-P 神...

2017-06-28 16:05:42

阅读数 250

评论数 0

基于 Python 和 Scikit-Learn 的机器学习介绍

http://python.jobbole.com/81721/ 我叫Alex,我在机器学习和网络图分析(主要是理论)有所涉猎。我同时在为一家俄罗斯移动运营商开发大数据产品。这是我第一次在网上写文章,不喜勿喷。 现在,很多人想开发高效的算法以及参加机器学习的竞赛。所以他...

2017-06-16 17:33:49

阅读数 273

评论数 0

机器学习:Python实现聚类算法(三)之总结

http://www.cnblogs.com/lc1217/p/6963687.html       考虑到学习知识的顺序及效率问题,所以后续的几种聚类方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好...

2017-06-09 09:21:03

阅读数 18341

评论数 0

深度学习入门实战(二)-用TensorFlow训练线性回归

https://www.qcloud.com/community/article/935938 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能是要看源代码才能理解某个方法的含义,所以今天我们就介绍一下 TensorFlow,这个由谷歌爸爸...

2017-04-21 15:34:11

阅读数 494

评论数 0

统计学习方法:KNN

http://www.cnblogs.com/xingshansi/p/6736385.html 前言 本文为《统计学习方法》第三章:KNN(k-Nearest Neighbor),主要包括:   1)KNN原理及代码实现;   2)K-d tree原理; 内容为自己的学习记...

2017-04-20 10:15:07

阅读数 1114

评论数 1

分类算法之决策树(Decision tree)

http://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1、摘要       在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类与贝叶斯网络两种分类算法。这两种算法都以贝叶斯定理为基础,可以对分...

2017-04-20 10:11:07

阅读数 693

评论数 0

一条SQL搞定信息增益的计算

http://www.cnblogs.com/qcloud1001/p/6735352.html 周东谕,2011年加入腾讯,现任职于腾讯互娱运营部数据中心,主要从事游戏相关的数据分析和挖掘工作。 信息增益原理介绍 介绍信息增益之前,首先需要介绍一...

2017-04-20 10:09:37

阅读数 394

评论数 0

卷积神经网络CNN与深度学习常用框架的介绍与使用

http://www.cnblogs.com/softzrp/p/6724884.html 一、神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传...

2017-04-19 09:51:03

阅读数 3889

评论数 0

机器学习-scikit learn学习笔记

http://www.cnblogs.com/Fndroid/p/6677565.html scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数...

2017-04-07 15:35:49

阅读数 532

评论数 0

深度学习实践系列(2)- 搭建notMNIST的深度神经网络

http://www.cnblogs.com/wdsunny/p/6654539.html 如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列 ,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识。 什么是深度神经网络?   神经网络包含三层:输入层(...

2017-04-02 02:19:30

阅读数 1170

评论数 0

代价函数

http://www.cnblogs.com/Belter/p/6653773.html 注:代价函数(有的地方也叫损失函数,Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就是梯度下降中提到...

2017-04-02 02:14:42

阅读数 1605

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭