深度学习:Keras入门(一)之基础篇

http://www.cnblogs.com/lc1217/p/7132364.html

1.关于Keras

        1)简介          

         Keras是由纯python编写的基于theano/tensorflow的深度学习框架。

         Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果,如果有如下需求,可以优先选择Keras:

                a)简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)

                b)支持CNN和RNN,或二者的结合

                c)无缝CPU和GPU切换

         2)设计原则

               a)用户友好:Keras是为人类而不是天顶星人设计的API。用户的使用体验始终是我们考虑的首要和中心内容。Keras遵循减少认知困难的最佳实践:Keras提供一致而简洁的API, 能够极大减少一般应用下用户的工作量,同时,Keras提供清晰和具有实践意义的bug反馈。

               b)模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。

              c)易扩展性:添加新模块超级容易,只需要仿照现有的模块编写新的类或函数即可。创建新模块的便利性使得Keras更适合于先进的研究工作。

              d)与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描述,使其更紧凑和更易debug,并提供了扩展的便利性。

 

2.Keras的模块结构

   

 

3.使用Keras搭建一个神经网络

 

4.主要概念

   1)符号计算

        Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还是TensorFlow,都是一个“符号式”的库。符号计算首先定义各种变量,然后建立一个“计算图”,计算图规定了各个变量之间的计算关系。

       符号计算也叫数据流图,其过程如下(gif图不好打开,所以用了静态图,数据是按图中黑色带箭头的线流动的):

        

     2)张量

          张量(tensor),可以看作是向量、矩阵的自然推广,用来表示广泛的数据类型。张量的阶数也叫维度。

          0阶张量,即标量,是一个数。

          1阶张量,即向量,一组有序排列的数

          2阶张量,即矩阵,一组向量有序的排列起来

          3阶张量,即立方体,一组矩阵上下排列起来

          4阶张量......
          依次类推

          重点:关于维度的理解

          假如有一个10长度的列表,那么我们横向看有10个数字,也可以叫做10维度,纵向看只能看到1个数字,那么就叫1维度。注意这个区别有助于理解Keras或者神经网络中计算时出现的维度问题。

    3)数据格式(data_format)

        目前主要有两种方式来表示张量:
        a) th模式或channels_first模式,Theano和caffe使用此模式。
        b)tf模式或channels_last模式,TensorFlow使用此模式。

 
        下面举例说明两种模式的区别:
         对于100张RGB3通道的16×32(高为16宽为32)彩色图,
         th表示方式:(100,3,16,32)
         tf表示方式:(100,16,32,3)
         唯一的区别就是表示通道个数3的位置不一样。

     4)模型

          Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况。
          a)序贯模型(Sequential):单输入单输出,一条路通到底,层与层之间只有相邻关系,没有跨层连接。这种模型编译速度快,操作也比较简单
          b)函数式模型(Model):多输入多输出,层与层之间任意连接。这种模型编译速度慢。

 

5.第一个示例

          这里也采用介绍神经网络时常用的一个例子:手写数字的识别。

          在写代码之前,基于这个例子介绍一些概念,方便大家理解。

          PS:可能是版本差异的问题,官网中的参数和示例中的参数是不一样的,官网中给出的参数少,并且有些参数支持,有些不支持。所以此例子去掉了不支持的参数,并且只介绍本例中用到的参数。

          1)Dense(500,input_shape=(784,))

               a)Dense层属于网络层-->常用层中的一个层

               b) 500表示输出的维度,完整的输出表示:(*,500):即输出任意个500维的数据流。但是在参数中只写维度就可以了,比较具体输出多少个是有输入确定的。换个说法,Dense的输出其实是个N×500的矩阵。

              c)input_shape(784,) 表示输入维度是784(28×28,后面具体介绍为什么),完整的输入表示:(*,784):即输入N个784维度的数据

         2)Activation('tanh')

              a)Activation:激活层

              b)'tanh' :激活函数

         3)Dropout(0.5)

              在训练过程中每次更新参数时随机断开一定百分比(rate)的输入神经元,防止过拟合。

         4)数据集

             数据集包括60000张28×28的训练集和10000张28×28的测试集及其对应的目标数字。如果完全按照上述数据格式表述,以tensorflow作为后端应该是(60000,28,28,3),因为示例中采用了mnist.load_data()获取数据集,所以已经判断使用了tensorflow作为后端,因此数据集就变成了(60000,28,28),那么input_shape(784,)应该是input_shape(28,28,)才对,但是在这个示例中这么写是不对的,需要转换成(60000,784),才可以。为什么需要转换呢?

           

              如上图,训练集(60000,28,28)作为输入,就相当于一个立方体,而输入层从当前角度看就是一个平面,立方体的数据流怎么进入平面的输入层进行计算呢?所以需要进行黄色箭头所示的变换,然后才进入输入层进行后续计算。至于从28*28变换成784之后输入层如何处理,就不需要我们关心了。(喜欢钻研的同学可以去研究下源代码)。

         并且,Keras中输入多为(nb_samples, input_dim)的形式:即(样本数量,输入维度)。

        5)示例代码

复制代码
from keras.models import Sequential  
from keras.layers.core import Dense, Dropout, Activation  
from keras.optimizers import SGD  
from keras.datasets import mnist  
import numpy 
'''
    第一步:选择模型
'''
model = Sequential()
'''
   第二步:构建网络层
'''
model.add(Dense(500,input_shape=(784,))) # 输入层,28*28=784  
model.add(Activation('tanh')) # 激活函数是tanh  
model.add(Dropout(0.5)) # 采用50%的dropout

model.add(Dense(500)) # 隐藏层节点500个  
model.add(Activation('tanh'))  
model.add(Dropout(0.5))

model.add(Dense(10)) # 输出结果是10个类别,所以维度是10  
model.add(Activation('softmax')) # 最后一层用softmax作为激活函数

'''
   第三步:编译
'''
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # 优化函数,设定学习率(lr)等参数  
model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode='categorical') # 使用交叉熵作为loss函数

'''
   第四步:训练
   .fit的一些参数
   batch_size:对总的样本数进行分组,每组包含的样本数量
   epochs :训练次数
   shuffle:是否把数据随机打乱之后再进行训练
   validation_split:拿出百分之多少用来做交叉验证
   verbose:屏显模式 0:不输出  1:输出进度  2:输出每次的训练结果
'''
(X_train, y_train), (X_test, y_test) = mnist.load_data() # 使用Keras自带的mnist工具读取数据(第一次需要联网)
# 由于mist的输入数据维度是(num, 28, 28),这里需要把后面的维度直接拼起来变成784维  
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2]) 
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2])  
Y_train = (numpy.arange(10) == y_train[:, None]).astype(int) 
Y_test = (numpy.arange(10) == y_test[:, None]).astype(int)

model.fit(X_train,Y_train,batch_size=200,epochs=50,shuffle=True,verbose=0,validation_split=0.3)
model.evaluate(X_test, Y_test, batch_size=200, verbose=0)

'''
    第五步:输出
'''
print("test set")
scores = model.evaluate(X_test,Y_test,batch_size=200,verbose=0)
print("")
print("The test loss is %f" % scores)
result = model.predict(X_test,batch_size=200,verbose=0)

result_max = numpy.argmax(result, axis = 1)
test_max = numpy.argmax(Y_test, axis = 1)

result_bool = numpy.equal(result_max, test_max)
true_num = numpy.sum(result_bool)
print("")
print("The accuracy of the model is %f" % (true_num/len(result_bool)))
复制代码

 

Keras:基于Theano和TensorFlow的深度学习库 这就是Keras Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano。Keras 为支持快 速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换 Keras适用的Python版本是:Python 2.7-3.5 Keras的设计原则是 模块性:模型可理解为一个独立的序列或图,完全可配置的模块以最少的代价自由组合在一起。具 体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可 以使用它们来构建自己的模型。 极简主义:每个模块都应该尽量的简洁。每一段代码都应该在初次阅读时都显得直观易懂。没有黑 魔法,因为它将给迭代和创新带来麻烦。 易扩展性:添加新模块超级简单的容易,只需要仿照现有的模块编写新的类或函数即可。创建新模 块的便利性使得Keras更适合于先进的研究工作。 与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描 述,使其更紧凑和更易debug,并提供了扩展的便利性。 Keras从2015年3月开始启动,经过一年多的开发,目前Keras进入了1.0的时代。Keras 1.0依然遵循相 同的设计原则,但与之前的版本相比有很大的不同。如果你曾经使用过此前的其他版本Keras。你或许 会关心1.0的新特性。 泛型模型:简单和强大的新模块,用于支持复杂深度学习模型的搭建。 更优秀的性能:现在,Keras模型的编译时间得到缩短。所有的RNN现在都可以用两种方式实现, Keras中文文档 以供用户在不同配置任务和配置环境下取得最大性能。现在,基于Theano的RNN也可以被展开, 以获得大概25%的加速计算。 测量指标:现在,你可以提供一系列的测量指标来在Keras的任何监测点观察模型性能。 更优的用户体验:我们面向使用者重新编写了代码,使得函数API更简单易记,同时提供更有效的 出错信息。 新版本的Keras提供了Lambda层,以实现一些简单的计算任务。 ... 如果你已经基于Keras0.3编写了自己的层,那么在升级后,你需要为自己的代码做以下调整,以 在Keras1.0上继续运行。请参考编写自己的层 关于Keras-cn 本文档是Keras文档的中文版,包括keras.io的全部内容,以及更多的例子、解释和建议,目前,文档 的计划是: 1.x版本:现有keras.io文档的中文翻译,保持与官方文档的同步 2.x版本:完善所有【Tips】模块,澄清深度学习中的相关概念和Keras模块的使用方法 3.x版本:增加Keras相关模块的实现原理和部分细节,帮助用户更准确的把握Keras,并添加更多 的示例代码 现在,keras-cn的版本号将简单的跟随最新的keras release版本 由于作者水平和研究方向所限,无法对所有模块都非常精通,因此文档中不可避免的会出现各种错误、 疏漏和不足之处。如果您在使用过程中有任何意见、建议和疑问,欢迎发送邮件 到moyan_work@foxmail.com与我取得联系。 您对文档的任何贡献,包括文档的翻译、查缺补漏、概念解释、发现和修改问题、贡献示例程序等,均 会被记录在致谢,十分感谢您对Keras中文文档的贡献! 同时,也欢迎您撰文向本文档投稿,您的稿件被录用后将以单独的页面显示在网站中,您有权在您的网 页下设置赞助二维码,以获取来自网友的小额赞助。 如果你发现本文档缺失了官方文档的部分内容,请积极联系我补充。 本文档相对于原文档有更多的使用指导和概念澄清,请在使用时关注文档中的Tips,特别的,本文档的 额外模块还有: 一些基本概念:位于快速开始模块的一些基本概念简单介绍了使用Keras前需要知道的一些小知 识,新手在使用前应该先阅读本部分的文档。 Keras安装和配置指南,提供了详细的Linux和Windows下Keras的安装和配置步骤。 深度学习Keras:位于导航栏最下方的该模块翻译了来自Keras作者博客keras.io和其他Keras相关 博客的文章,该栏目的文章提供了对深度学习的理解和大量使用Keras的例子,您也可以向这个栏 目投稿。 所有的文章均在醒目位置标志标明来源与作者,本文档对该栏目文章的原文不具有任何处 置权。如您仍觉不妥,请联系本人(moyan_work@foxmail.com)删除。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值